Similarity-Based Clustering For IoT Device Classification

被引:2
作者
Dupont, Guillaume [1 ]
Leite, Cristoffer [1 ]
dos Santos, Daniel Ricardo [2 ]
Costante, Elisa [2 ]
den Hartog, Jerry [1 ]
Etalle, Sandro [1 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
[2] Forescout Technol, San Jose, CA USA
来源
2021 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2021) | 2021年
关键词
Internet of Things; Classification; Clustering;
D O I
10.1109/COINS51742.2021.9524201
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classifying devices connected to an enterprise network is a fundamental security control that is nevertheless challenging due to the limitations of fingerprint-based classification and black-box machine learning. In this paper, we address such limitations by proposing a similarity-based clustering method. We evaluate our solution and compare it to a state-of-the-art fingerprint-based classification engine using data from 20,000 devices. The results show that we can successfully classify around half of the unclassified devices with a high accuracy. We also validate our approach with domain experts to demonstrate its usability in producing new fingerprinting rules.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 45 条
[21]  
Meidan Y., 2017, P S APPL COMPUTING S, P506, DOI [DOI 10.1145/3019612.3019878, 10.1145/3019612.3019878, 10.1145/3019612]
[22]  
Meidan Y, 2017, Arxiv, DOI [arXiv:1709.04647, 10.48550/arXiv.1709.04647]
[23]   IoT SENTINEL: Automated Device-Type Identification for Security Enforcement in IoT [J].
Miettinen, Markus ;
Sadeghi, Ahmad-Reza ;
Marchal, Samuel ;
Asokan, N. ;
Hafeez, Ibbad ;
Tarkoma, Sasu .
2017 IEEE 37TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2017), 2017, :2177-2184
[24]  
Mirsky Y, 2019, PROCEEDINGS OF THE 28TH USENIX SECURITY SYMPOSIUM, P461
[25]   A guided tour to approximate string matching [J].
Navarro, G .
ACM COMPUTING SURVEYS, 2001, 33 (01) :31-88
[26]  
Office of Inspector General, 2019, CYB MAN OV JET PROP
[27]   DeviceMien: Network Device Behavior Modeling for Identifying Unknown IoT Devices [J].
Ortiz, Jorge ;
Crawford, Catherine ;
Le, Franck .
PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS DESIGN AND IMPLEMENTATION (IOTDI '19), 2019, :106-117
[28]  
Pêgo PRJ, 2017, IBER CONF INF SYST
[29]  
Petrovic S., 2006, P 11 NORD WORKSH SEC, P53
[30]  
Santos Matias R. P., 2018, 2018 IEEE Symposium on Computers and Communications (ISCC), P00304, DOI 10.1109/ISCC.2018.8538630