Similarity-Based Clustering For IoT Device Classification

被引:2
作者
Dupont, Guillaume [1 ]
Leite, Cristoffer [1 ]
dos Santos, Daniel Ricardo [2 ]
Costante, Elisa [2 ]
den Hartog, Jerry [1 ]
Etalle, Sandro [1 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
[2] Forescout Technol, San Jose, CA USA
来源
2021 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2021) | 2021年
关键词
Internet of Things; Classification; Clustering;
D O I
10.1109/COINS51742.2021.9524201
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classifying devices connected to an enterprise network is a fundamental security control that is nevertheless challenging due to the limitations of fingerprint-based classification and black-box machine learning. In this paper, we address such limitations by proposing a similarity-based clustering method. We evaluate our solution and compare it to a state-of-the-art fingerprint-based classification engine using data from 20,000 devices. The results show that we can successfully classify around half of the unclassified devices with a high accuracy. We also validate our approach with domain experts to demonstrate its usability in producing new fingerprinting rules.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 45 条
[1]  
Abdelnur HJ, 2008, LECT NOTES COMPUT SC, V5230, P372, DOI 10.1007/978-3-540-87403-4_20
[2]  
Ammar Nesrine, 2019, 2019 Network Traffic Measurement and Analysis Conference (TMA). Proceedings, P195, DOI 10.23919/TMA.2019.8784517
[3]  
[Anonymous], 2006, SIGCOMM Workshop on Mining Network Data, page, DOI DOI 10.1145/1162678.1162679
[4]  
[Anonymous], 2010, P 2010 IEEE INT C DA, DOI [DOI 10.1109/ICDM.2010.35, 10.1109/ICDM.2010.35]
[5]   An extensive comparative study of cluster validity indices [J].
Arbelaitz, Olatz ;
Gurrutxaga, Ibai ;
Muguerza, Javier ;
Perez, Jesus M. ;
Perona, Inigo .
PATTERN RECOGNITION, 2013, 46 (01) :243-256
[6]  
Bai L, 2018, C LOCAL COMPUT NETW, P597
[7]   The art of mapping IoT devices in networks [J].
Bajpai P. ;
Sood A.K. ;
Enbody R.J. .
Network Security, 2018, 2018 (04) :8-15
[8]  
Campello Ricardo J. G. B., 2013, Advances in Knowledge Discovery and Data Mining. 17th Pacific-Asia Conference (PAKDD 2013). Proceedings, P160, DOI 10.1007/978-3-642-37456-2_14
[9]   Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection [J].
Campello, Ricardo J. G. B. ;
Moulavi, Davoud ;
Zimek, Arthur ;
Sander, Joerg .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2015, 10 (01)
[10]  
Cui A, 2010, 26TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE (ACSAC 2010), P97