Doubles, finiteness properties of groups, and quadratic isoperimetric inequalities

被引:12
作者
Bridson, MR [1 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
D O I
10.1006/jabr.1998.7710
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a doubling construction that gives many new examples of groups that satisfy a quadratic isoperimetric inequality. Using this construction, we prove that the presence of a quadratic isoperimetric inequality does not constrain the higher finiteness properties of a group (in contrast to the sub-quadratic case). (C) 1999 Academic Press.
引用
收藏
页码:652 / 667
页数:16
相关论文
共 28 条
[1]  
ALONSO JM, 1995, P LOND MATH SOC, V70, P56
[2]  
ALONSO JM, 1990, CR ACAD SCI I-MATH, V311, P761
[3]  
[Anonymous], COHOMOLOGY GROUPS
[4]  
[Anonymous], METRIC SPACES NONPOS
[5]  
BAMSLAG G, 1997, J LOND MATH SOC, V56, P292
[6]  
BESTVINA M, 1992, J DIFFER GEOM, V35, P85
[7]   Morse theory and finiteness properties of groups [J].
Bestvina, M ;
Brady, N .
INVENTIONES MATHEMATICAE, 1997, 129 (03) :445-470
[8]   A GEOMETRIC INVARIANT OF DISCRETE-GROUPS [J].
BIERI, R ;
NEUMANN, WD ;
STREBEL, R .
INVENTIONES MATHEMATICAE, 1987, 90 (03) :451-477
[9]  
BIERI R, 1992, GEOMETRIC INVARIANTS
[10]  
BIERI R, 1998, GROUP THEORY DOWN UN