Programming van der Waals interactions with complex symmetries into microparticles using liquid crystallinity

被引:9
作者
Fuster, H. A. [1 ]
Wang, Xin [2 ]
Wang, Xiaoguang [1 ,4 ]
Bukusoglu, E. [1 ,5 ]
Spagnolie, S. E. [3 ]
Abbott, N. L. [2 ]
机构
[1] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
[2] Cornell Univ, Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[3] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[4] Ohio State Univ, William G Lowrie Dept Chem & Biomol Engn, Columbus, OH 43210 USA
[5] Middle East Tech Univ, Dept Chem Engn, TR-06800 Ankara, Turkey
关键词
TOPOLOGICAL DEFECTS; FORCES; ORGANIZATION; VANDERWAALS; ANISOTROPY;
D O I
10.1126/sciadv.abb1327
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Asymmetric interactions such as entropic (e.g., encoded by nonspherical shapes) or surface forces (e.g., encoded by patterned surface chemistry or DNA hybridization) provide access to functional states of colloidal matter, but versatile approaches for engineering asymmetric van der Waals interactions have the potential to expand further the palette of materials that can be assembled through such bottom-up processes. We show that polymerization of liquid crystal (LC) emulsions leads to compositionally homogeneous and spherical microparticles that encode van der Waals interactions with complex symmetries (e.g., quadrupolar and dipolar) that reflect the internal organization of the LC. Experiments performed using kinetically controlled probe colloid adsorption and complementary calculations support our conclusion that LC ordering can program van der Waals interactions by similar to 20 k(B)T across the surfaces of microparticles. Because diverse LC configurations can be engineered by confinement, these results provide fresh ideas for programming van der Waals interactions for assembly of soft matter.
引用
收藏
页数:9
相关论文
共 52 条
[2]   Nonadditivity of nanoparticle interactions [J].
Batista, Carlos A. Silvera ;
Larson, Ronald G. ;
Kotov, Nicholas A. .
SCIENCE, 2015, 350 (6257) :138-+
[3]   Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals [J].
Brake, JM ;
Daschner, MK ;
Luk, YY ;
Abbott, NL .
SCIENCE, 2003, 302 (5653) :2094-2097
[4]  
BROER DJ, 1991, MAKROMOL CHEM, V192, P59
[5]   THEORETICAL DETERMINATION OF ANGULARLY-INTEGRATED ENERGY-LOSS FUNCTIONS FOR ANISOTROPIC MATERIALS [J].
BROWNING, ND ;
YUAN, J ;
BROWN, LM .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1993, 67 (01) :261-271
[6]   Programmable self-assembly [J].
Cademartiri, Ludovico ;
Bishop, Kyle J. M. .
NATURE MATERIALS, 2015, 14 (01) :2-9
[7]   Influence of Simple Electrolytes on the Orientational Ordering of Thermotropic Liquid Crystals at Aqueous Interfaces [J].
Carlton, Rebecca J. ;
Gupta, Jugal K. ;
Swift, Candice L. ;
Abbott, Nicholas L. .
LANGMUIR, 2012, 28 (01) :31-36
[8]   SURFACE ELASTIC AND MOLECULAR-ANCHORING PROPERTIES OF NEMATIC LIQUID-CRYSTALS CONFINED TO CYLINDRICAL CAVITIES [J].
CRAWFORD, GP ;
ALLENDER, DW ;
DOANE, JW .
PHYSICAL REVIEW A, 1992, 45 (12) :8693-8708
[9]  
de Gennes PG., 1995, The physics of liquid crystals (No. 83), V48, P70, DOI [10.1063/1.2808028, DOI 10.1063/1.2808028]
[10]   Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field [J].
Ding, Tao ;
Song, Kai ;
Clays, Koen ;
Tung, Chen-Ho .
ADVANCED MATERIALS, 2009, 21 (19) :1936-1940