Convergence rate of an iterative method for a nonlinear matrix equation

被引:27
作者
Guo, CH [1 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
关键词
matrix equation; maximal Hermitian solution; cyclic reduction; iterative methods; convergence rate;
D O I
10.1137/S0895479800374017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a convergence result for an iterative method, proposed recently by Meini, for finding the maximal Hermitian positive definite solution of the matrix equation X + A* X-1 A = Q, where Q is Hermitian positive definite.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 17 条
[1]   POSITIVE SOLUTIONS TO X = A-BX-1B-STAR [J].
ANDERSON, WN ;
MORLEY, TD ;
TRAPP, GE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 134 :53-62
[2]   On the solution of a nonlinear matrix equation arising in queueing problems [J].
Bini, D ;
Meini, B .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :906-926
[3]   Effective methods for solving banded Toeplitz systems [J].
Bini, DA ;
Meini, B .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (03) :700-719
[4]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A POSITIVE-DEFINITE SOLUTION OF THE MATRIX EQUATION X+A-ASTERISK-X-1A=Q [J].
ENGWERDA, JC ;
RAN, ACM ;
RIJKEBOER, AL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 186 :255-275
[6]   SOLUTION OF THE SYLVESTER MATRIX EQUATION AXB(T)+CXD(T)=E [J].
GARDINER, JD ;
LAUB, AJ ;
AMATO, JJ ;
MOLER, CB .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1992, 18 (02) :223-231
[7]   Newton's method for discrete algebraic Riccati equations when the closed-loop matrix has eigenvalues on the unit circle [J].
Guo, CH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) :279-294
[8]   Iterative solution of two matrix equations [J].
Guo, CH ;
Lancaster, P .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1589-1603
[9]   Numerical analysis of a quadratic matrix equation [J].
Higham, NJ ;
Kim, HM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2000, 20 (04) :499-519
[10]  
HIGHAM NJ, IN PRESS SIAM J MATR