Relaxation scheme for a lattice-Boltzmann-type discrete velocity model and numerical Navier-Stokes limit

被引:15
作者
Klar, A [1 ]
机构
[1] Free Univ Berlin, Fachbereich Math & Informat, D-14195 Berlin, Germany
关键词
discrete velocity models; lattice-Boltzmann method; asymptotic analysis; low Mach number limit; incompressible Navier-Stokes equations; projection scheme; MAC grid; numerical methods for stiff equations;
D O I
10.1006/jcph.1998.6123
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A discrete velocity model based on a lattice-Boltzmann approximation is considered in the low Mach number limit. A numerical scheme for this model working uniformly in the incompressible Navier-Stokes limit is constructed. The scheme is induced by the asymptotic analysis of the Navier-Stokes Limit and works uniformly for all ranges of mean free paths. In the limit the scheme reduces to an explicit finite difference scheme for the incompressible Navier-Stokes equation, the Chorin projection method with MAC grid. Numerical results are presented and the uniform convergence of the scheme is established numerically. (C) 1999 Academic Press.
引用
收藏
页码:416 / 432
页数:17
相关论文
共 21 条
[1]   Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation [J].
Abe, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (01) :241-246
[2]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[3]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[4]   Uniformly accurate schemes for hyperbolic systems with relaxation [J].
Caflisch, RE ;
Jin, S ;
Russo, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :246-281
[5]  
CAO N, 1997, PHYS REV E, V55, P21
[6]  
Cercignani C, 1988, BOLTZMANN EQUATION I
[7]   RECOVERY OF THE NAVIER-STOKES EQUATIONS USING A LATTICE-GAS BOLTZMANN METHOD [J].
CHEN, HD ;
CHEN, SY ;
MATTHAEUS, WH .
PHYSICAL REVIEW A, 1992, 45 (08) :R5339-R5342
[8]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[9]   INCOMPRESSIBLE NAVIER-STOKES AND EULER LIMITS OF THE BOLTZMANN-EQUATION [J].
DEMASI, A ;
ESPOSITO, R ;
LEBOWITZ, JL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (08) :1189-1214
[10]  
Frisch U., 1987, Complex Systems, V1, P649