共 14 条
Enhanced power density of metal-supported solid oxide fuel cell with a two-step firing process
被引:14
作者:
Cho, Hyoup Je
[1
]
Park, Young Min
[2
]
Choi, Gyeong Man
[1
]
机构:
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Fuel Cell Res Ctr, Pohang 790784, South Korea
[2] Res Inst Ind Sci & Technol RIST, Fuel Cell Project, Pohang 790330, South Korea
关键词:
SOFC;
Metal support;
Ni;
Anode;
Microstructure;
Two-step sintering;
SOFC INTERCONNECT;
PERFORMANCE;
FABRICATION;
D O I:
10.1016/j.ssi.2010.03.023
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
In order to solve the Ni-coarsening problem during fabrication, Ni-supported solid oxide fuel cells (SOFCs) were fabricated using a two step process; co-sintering the cell at a high temperature in air and reducing it at a low temperature. NiO, NiO-YSZ, and YSZ (yttria-stabilized zirconia) were tape casted and the laminated cell was co-fired at 1300 degrees C in air to form a three-layered half cell and then reduced at 800 degrees C in H(2) in order to convert the NiO to the Ni support. Thin and strong Ni-supported SOFC was successfully fabricated by the two-step process without visible cracks. The anodic microstructure was compared with that sintered at 1350 degrees C in H(2). The particle size of Ni in anode, reduced at 800 degrees C, was much smaller (< 1 mu m) and more uniform than that of Ni sintered at 1350 degrees C in H(2) (similar to 5 mu m). The cell with the two-step fired anode showed a power density as high as similar to 0.93 W/cm(2) when it was measured at 800 degrees C using LSCF as cathodes. This was about twice higher than that of the cell co-fired at 1350 degrees C in H(2) and thus the highest value among many metal-supported cells based on a YSZ electrolyte. Thus, the anode microstructure is critical in the performance of metal-supported SOFC. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:519 / 522
页数:4
相关论文