共 50 条
Dynamic simulation of N2O emissions from a full-scale partial nitritation reactor
被引:12
|作者:
Mampaey, Kris E.
[1
]
Sperandio, Mathieu
[2
]
van Loosdrecht, Mark C. M.
[3
]
Volcke, Eveline I. P.
[1
,4
]
机构:
[1] Univ Ghent, Dept Biosyst Engn, Coupure Links 653, B-9000 Ghent, Belgium
[2] Univ Toulouse, INSA, INRA, CNRS,LISBP, Toulouse, France
[3] Delft Univ Technol, Dept Biotechnol, Julianalaan 67, NL-2628 BC Delft, Netherlands
[4] Univ Ghent, Dept Green Chem & Technol, Coupure Links 653, B-9000 Ghent, Belgium
关键词:
Biological nitrogen removal;
Digester effluent;
Dynamic simulation;
Greenhouse gas emission;
Wastewater treatment;
WASTE-WATER TREATMENT;
NITROUS-OXIDE PRODUCTION;
AMMONIA-OXIDIZING BACTERIA;
SHARON PROCESS;
NITRIC-OXIDE;
MODEL;
OXIDATION;
REMOVAL;
NITRIFICATION;
HYDROXYLAMINE;
D O I:
10.1016/j.bej.2019.107356
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
This study deals with the potential and the limitations of dynamic models for describing and predicting nitrous oxide (N2O) emissions associated with biological nitrogen removal from wastewater. The results of a three-week monitoring campaign on a full-scale partial nitritation reactor were reproduced through a state-of-the-art model including different biological N2O formation pathways. The partial nitritation reactor under study was a SHARON reactor treating the effluent from a municipal wastewater treatment plant sludge digester. A qualitative and quantitative comparison between experimental data and simulation results was performed to identify N2O formation pathways as well as for model identification. Heterotrophic denitrifying bacteria and ammonium oxidizing bacteria (AOB) were responsible for N2O formation under anoxic conditions, whereas under aerated conditions the AOB were the most important N2O producers. Relative to previously proposed models, hydroxylamine (NH2OH) had to be included as a state variable in the AOB conversions in order to describe potential N2O formation by AOB under anoxic conditions. An oxygen inhibition term in the corresponding reaction kinetics was required to fairly represent the relative contribution of the different AOB pathways for N2O production. Nevertheless, quantitative prediction of N2O emissions with models remains a challenge, which is discussed.
引用
收藏
页数:10
相关论文