Multiplicative invariant lattices in Rn obtained by twisting of group algebras and some explicit characterizations

被引:3
作者
Albuquerque, Helena [2 ]
Krausshar, Rolf Soren [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Sect Anal, B-3001 Louvain, Belgium
[2] Univ Coimbra, Fac Ciencias & Tecnol, Dept Matemat, P-3001454 Coimbra, Portugal
关键词
twisted group algebras; lattices; algebraic number fields; generalized norm and trace functions;
D O I
10.1016/j.jalgebra.2007.11.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and RG be its group algebra defined over R. If we define in G a 2-cochain F, then we can consider the algebra R(F)G which is obtained from RG deforming the product, X.(Fy) = F(x, y)xy, for all x, y is an element of G. Examples of R-F (Z(2))(n) algebras are Clifford algebras and Cayley algebras like octonions. In this paper we consider generalizations of lattices with complex multiplication in the context of these twisted group algebras. We explain how these induce the natural algebraic structure to endow any arbitrary finite-dimensional lattice whose real components stem from any finite algebraic field extension over Q with a multiplicative closed structure. Furthermore, we develop some fully explicit characterizations in terms of generalized trace and norm functions. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1116 / 1131
页数:16
相关论文
共 19 条
[1]   Clifford algebras obtained by twisting of group algebras [J].
Albuquerque, H ;
Majid, S .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 171 (2-3) :133-148
[2]   Quasialgebra structure of the octonions [J].
Albuquerque, H ;
Majid, S .
JOURNAL OF ALGEBRA, 1999, 220 (01) :188-224
[3]  
[Anonymous], ELLIPTISCHE FUNKTION
[4]  
[Anonymous], 2004, GEN ANAL AUTOMORPHIC
[5]   Ideal theory in quaternary ionic algebra [J].
Brandt, H .
MATHEMATISCHE ANNALEN, 1928, 99 :1-29
[6]  
Conway J., 1998, Grundlehren der mathematischen Wissenschaften, V290
[7]   INTEGRAL CAYLEY NUMBERS [J].
COXETER, HSM .
DUKE MATHEMATICAL JOURNAL, 1946, 13 (04) :561-578
[8]  
ELSTRODT J, 1988, P LOND MATH SOC, V57, P239
[9]   KLOOSTERMAN SUMS FOR CLIFFORD ALGEBRAS AND A LOWER BOUND FOR THE POSITIVE EIGENVALUES OF THE LAPLACIAN FOR CONGRUENCE SUBGROUPS ACTING ON HYPERBOLIC SPACES [J].
ELSTRODT, J ;
GRUNEWALD, F ;
MENNICKE, J .
INVENTIONES MATHEMATICAE, 1990, 101 (03) :641-685
[10]   UBER DIE QUATERNIONENMULTIPLIKATION REGULARER VIERFACHPERIODISCHER FUNKTIONEN [J].
FUETER, R .
EXPERIENTIA, 1945, 1 (02) :57-57