Phase Logic Based on π Josephson Junctions

被引:8
|
作者
Maksimovskaya, A. A. [1 ,2 ]
Ruzhickiy, V., I [1 ,2 ,3 ]
Klenov, N., V [1 ,2 ,3 ]
Bakurskiy, S., V [3 ]
Kupriyanov, M. Yu [3 ]
Soloviev, I. I. [1 ,2 ,3 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[2] Dukhov All Russian Res Inst Automat, Moscow 103030, Russia
[3] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
SUPERCONDUCTOR; FERROMAGNET;
D O I
10.1134/S0021364022600884
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The transition to Josephson digital circuits with the representation of information in the form of phase jumps of the superconducting order parameter on heterostructures promises a radical increase in the degree of integration while maintaining high speed and energy efficiency. However, it is not yet possible to manufacture reproducible bistable Josephson junctions, which are necessary for the functioning of the previously proposed basic units of the phase logic. To solve this problem, the concept of phase logic based on pi junctions is proposed and analyzed within the resistive model of Josephson heterostructures. The potential energy of such junctions has a single minimum, with a difference in the order parameters of the electrodes equal to pi. It is demonstrated that the use of pi junctions allows one to implement the entire set of logic devices necessary for the operation of digital computing devices based on phase logic.
引用
收藏
页码:735 / 741
页数:7
相关论文
共 50 条
  • [21] Microscopic study of the Josephson supercurrent diode effect in Josephson junctions based on two-dimensional electron gas
    Costa, Andreas
    Fabian, Jaroslav
    Kochan, Denis
    PHYSICAL REVIEW B, 2023, 108 (05)
  • [22] Magnetic Josephson junctions with noncentrosymmetric superconductors
    Rahnavard, Yousef
    Manske, Dirk
    Annunziata, Gaetano
    PHYSICAL REVIEW B, 2014, 89 (21)
  • [23] Artificial synapses based on Josephson junctions with Fe nanoclusters in the amorphous Ge barrier
    Jue, Emilie
    Iankevich, Gleb
    Reisinger, Thomas
    Hahn, Horst
    Provenzano, Virgil
    Pufall, Matthew R.
    Haygood, Ian W.
    Rippard, William H.
    Schneider, Michael L.
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (07)
  • [24] Overdamped NbN Josephson junctions based on Nb/AlOx/Nb trilayer technology
    Iwai, T
    Aoyama, T
    Oke, R
    Akaike, H
    Fujimaki, A
    Hayakawa, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1999, 38 (8B): : L929 - L931
  • [25] Current-phase relations of InAs nanowire Josephson junctions: From interacting to multimode regimes
    Hart, Sean
    Cui, Zheng
    Menard, Gerbold
    Deng, Mingtang
    Antipov, Andrey E.
    Lutchyn, Roman M.
    Krogstrup, Peter
    Marcus, Charles M.
    Moler, Kathryn A.
    PHYSICAL REVIEW B, 2019, 100 (06)
  • [26] Joule overheating poisons the fractional ac Josephson effect in topological Josephson junctions
    Le Calvez, Kevin
    Veyrat, Louis
    Gay, Frederic
    Plaindoux, Philippe
    Winkelmann, Clemens B.
    Courtois, Herve
    Sacepe, Benjamin
    COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [27] Oscillations of Josephson-vortex flow resistance in narrow intrinsic Josephson junctions
    Hatano, T
    Wang, H
    Kim, S
    Urayama, S
    Kawakami, S
    Kim, SJ
    Nagao, M
    Inomata, K
    Takano, Y
    Yamashita, T
    Tachiki, M
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) : 912 - 915
  • [28] Spontaneous fractional Josephson current in parafermion junctions
    Iyer, Kishore
    Ratnakar, Amulya
    Mukhopadyay, Aabir
    Rao, Sumathi
    Das, Sourin
    PHYSICAL REVIEW B, 2023, 107 (12)
  • [29] Charge transport in InAs nanowire Josephson junctions
    Abay, Simon
    Persson, Daniel
    Nilsson, Henrik
    Wu, Fan
    Xu, H. Q.
    Fogelstrom, Mikael
    Shumeiko, Vitaly
    Delsing, Per
    PHYSICAL REVIEW B, 2014, 89 (21)
  • [30] Supercurrent decay in ballistic magnetic Josephson junctions
    Ness, Herve
    Sadovskyy, Ivan A.
    Antipov, Andrey E.
    van Schilfgaarde, Mark
    Lutchyn, Roman M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)