On One Eigenvalue Problem for a Differential Operator with Integral Conditions

被引:0
作者
Jeseviciute, Z. [1 ]
机构
[1] Inst Math & Informat, LT-08663 Vilnius, Lithuania
来源
DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS (DETA 2009) | 2009年
关键词
eigenvalue problem; nonlocal boundary condition; multiple eigenvalue; complex eigenvalue; NONLOCAL BOUNDARY-CONDITION; STABILITY; EQUATION; SCHEME;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an eigenvalue problem for a differential operator with nonlocal integral conditions, when variable coefficients arise in nonlocal integral conditions, is investigated. We consider the structure of the spectrum for the eigenvalue problem. We investigate how eigenvalues depend on the parameters occurring in the nonlocal boundary conditions. The computation experiment was done and described.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 2004, NONLINEAR ANAL-MODEL, DOI 2191914
[2]  
BANDRYSKII BI, 2006, NONLINEAR ANAL-MODEL, V13, P32
[3]   STEPWISE STABILITY FOR THE HEAT-EQUATION WITH A NONLOCAL CONSTRAINT [J].
CAHLON, B ;
KULKARNI, DM ;
SHI, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (02) :571-593
[4]   A monotonic finite-difference scheme for a parabolic problem with nonlocal conditions [J].
Ciegis, R ;
Stikonas, A ;
Stikoniene, O ;
Suboc, O .
DIFFERENTIAL EQUATIONS, 2002, 38 (07) :1027-1037
[5]  
Gulin A., 2006, Computational Methods in Applied Mathematics, V6, P31, DOI 10.2478/cmam-2006-0002
[6]  
GULIN AV, 2008, STABILITY NONLOCAL D
[7]   Eigenvalues of some non-local boundary-value PR oblems [J].
Infante, G .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 :75-86
[8]  
IVANAUSKAS F, 2009, APPL MATH C IN PRESS
[9]  
Jeseviciute Z., 2008, Computational Methods in Applied Mathematics, V8, P360
[10]  
Makarov V. L., 2003, CYBERN SYSTEM ANAL, V6, P862