On One Eigenvalue Problem for a Differential Operator with Integral Conditions

被引:0
|
作者
Jeseviciute, Z. [1 ]
机构
[1] Inst Math & Informat, LT-08663 Vilnius, Lithuania
来源
DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS (DETA 2009) | 2009年
关键词
eigenvalue problem; nonlocal boundary condition; multiple eigenvalue; complex eigenvalue; NONLOCAL BOUNDARY-CONDITION; STABILITY; EQUATION; SCHEME;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper an eigenvalue problem for a differential operator with nonlocal integral conditions, when variable coefficients arise in nonlocal integral conditions, is investigated. We consider the structure of the spectrum for the eigenvalue problem. We investigate how eigenvalues depend on the parameters occurring in the nonlocal boundary conditions. The computation experiment was done and described.
引用
收藏
页码:99 / 105
页数:7
相关论文
共 50 条
  • [1] The Eigenvalue Problem for a One-Dimensional Differential Operator with a Variable Coefficient and Nonlocal Integral Conditions*
    Sapagovas, Mifodijus
    Ciupaila, Regimantas
    Joksiene, Zivile
    LITHUANIAN MATHEMATICAL JOURNAL, 2014, 54 (03) : 345 - 355
  • [2] Numerical Analysis of the Eigenvalue Problem for One-Dimensional Differential Operator with Nonlocal Integral Conditions
    Sajavicius, S.
    Sapagovas, M.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2009, 14 (01): : 115 - 122
  • [3] The Eigenvalue Problem for a One-Dimensional Differential Operator with a Variable Coefficient and Nonlocal Integral Conditions*
    Mifodijus Sapagovas
    Regimantas Čiupaila
    Živilė Jokšiene
    Lithuanian Mathematical Journal, 2014, 54 : 345 - 355
  • [4] A new eigenvalue problem for the difference operator with nonlocal conditions
    Sapagovas, Mifodijus
    Ciupaila, Regimantas
    Jakubeliene, Kristina
    Rutkauskas, Stasys
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (03): : 462 - 484
  • [5] An eigenvalue problem involving an anisotropic differential operator
    Farcaseanu, Maria
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (03) : 297 - 306
  • [6] Eigenvalue problem for fractional differential equations with nonlinear integral and disturbance parameter in boundary conditions
    Wenxia Wang
    Xiaotong Guo
    Boundary Value Problems, 2016
  • [7] Eigenvalue problem for fractional differential equations with nonlinear integral and disturbance parameter in boundary conditions
    Wang, Wenxia
    Guo, Xiaotong
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 23
  • [8] Wavelet Galerkin method for eigenvalue problem of a compact integral operator
    Panigrahi, Bijaya Laxmi
    Nelakanti, Gnaneshwar
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (04) : 1222 - 1232
  • [9] The eigenvalue problem of one-dimensional Dirac operator
    Karwowski, Jacek
    Ishkhanyan, Artur
    Poszwa, Andrzej
    THEORETICAL CHEMISTRY ACCOUNTS, 2020, 139 (12)
  • [10] On the eigenvalue problems for differential operators with coupled boundary conditions
    Sajavicius, S.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2010, 15 (04): : 493 - 500