From genetics to systems biology of stress-related mental disorders

被引:12
作者
Dalvie, Shareefa [1 ,2 ,3 ]
Chatzinakos, Chris [4 ,5 ]
Al Zoubi, Obada [4 ,5 ]
Georgiadis, Foivos [4 ,5 ]
Lancashire, Lee [5 ,6 ]
Daskalakis, Nikolaos P. [4 ,5 ]
机构
[1] Univ Cape Town, Dept Psychiat, South African Med Res Council SAMRC, Unit Risk & Resilience Mental Disorders, Cape Town, South Africa
[2] Univ Cape Town, Neurosci Inst, Cape Town, South Africa
[3] Univ Cape Town, South African Med Res Council SAMRC, Dept Paediat & Child Hlth, Unit Child & Adolescent Hlth, Cape Town, South Africa
[4] Harvard Med Sch, McLean Hosp, Dept Psychiat, Belmont, MA 02115 USA
[5] Broad Inst MIT & Harvard, Stanley Ctr Psychiat Res, Cambridge, MA 02142 USA
[6] Cohen Vet Biosci, Dept Data Sci, New York, NY USA
来源
NEUROBIOLOGY OF STRESS | 2021年 / 15卷
关键词
Stress disorders; Traumatic; Genetics; Systems biology; Transcriptome; Epigenomics; GENOME-WIDE ASSOCIATION; MAJOR DEPRESSIVE DISORDER; TRANSCRIPTIONAL SIGNATURES; ENVIRONMENTAL-INFLUENCES; TRAUMA; SYMPTOMS; METHYLATION; EXPRESSION; BIOMARKERS; BLOOD;
D O I
10.1016/j.ynstr.2021.100393
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Many individuals will be exposed to some form of traumatic stress in their lifetime which, in turn, increases the likelihood of developing stress-related disorders such as post-traumatic stress disorder (PTSD), major depressive disorder (MDD) and anxiety disorders (ANX). The development of these disorders is also influenced by genetics and have heritability estimates ranging between similar to 30 and 70%. In this review, we provide an overview of the findings of genome-wide association studies for PTSD, depression and ANX, and we observe a clear genetic overlap between these three diagnostic categories. We go on to highlight the results from transcriptomic and epigenomic studies, and, given the multifactorial nature of stress-related disorders, we provide an overview of the gene-environment studies that have been conducted to date. Finally, we discuss systems biology approaches that are now seeing wider utility in determining a more holistic view of these complex disorders.
引用
收藏
页数:14
相关论文
共 159 条
  • [71] Reproducible Genetic Risk Loci for Anxiety: Results From ∼200,000 Participants in the Million Veteran Program
    Levey, Daniel F.
    Gelernter, Joel
    Polimanti, Renato
    Zhou, Hang
    Cheng, Zhongshan
    Aslan, Mihaela
    Quaden, Rachel
    Concato, John
    Radhakrishnan, Krishnan
    Bryois, Julien
    Sullivan, Patrick F.
    Program, Million Veteran
    Stein, Murray B.
    [J]. AMERICAN JOURNAL OF PSYCHIATRY, 2020, 177 (03) : 223 - 232
  • [72] Further confirmation of netrin 1 receptor (DCC) as a depression risk gene via integrations of multi-omics data
    Li, Hui-Juan
    Qu, Na
    Hui, Li
    Cai, Xin
    Zhang, Chu-Yi
    Zhong, Bao-Liang
    Zhang, Shu-Fang
    Chen, Jing
    Xia, Bin
    Wang, Lu
    Jia, Qiu-Fang
    Li, Wei
    Chang, Hong
    Xiao, Xiao
    Li, Ming
    Li, Yi
    [J]. TRANSLATIONAL PSYCHIATRY, 2020, 10 (01)
  • [73] An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci
    Logue, Mark W.
    Miller, Mark W.
    Wolf, Erika J.
    Huber, Bertrand Russ
    Morrison, Filomene G.
    Zhou, Zhenwei
    Zheng, Yuanchao
    Smith, Alicia K.
    Daskalakis, Nikolaos P.
    Ratanatharathorn, Andrew
    Uddin, Monica
    Nievergelt, Caroline M.
    Ashley-Koch, Allison E.
    Baker, Dewleen G.
    Beckham, Jean C.
    Garrett, Melanie E.
    Boks, Marco P.
    Geuze, Elbert
    Grant, Gerald A.
    Hauser, Michael A.
    Kessler, Ronald C.
    Kimbrel, Nathan A.
    Maihofer, Adam X.
    Marx, Christine E.
    Qin, Xue-Jun
    Risbrough, Victoria B.
    Rutten, Bart P. F.
    Stein, Murray B.
    Ursano, Robert J.
    Vermetten, Eric
    Vinkers, Christiaan H.
    Ware, Erin B.
    Stone, Annjanette
    Schichman, Steven A.
    McGlinchey, Regina E.
    Milberg, William P.
    Hayes, Jasmeet P.
    Verfaellie, Mieke
    [J]. CLINICAL EPIGENETICS, 2020, 12 (01)
  • [74] Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data
    Lopez-Garcia, Guillermo
    Jerez, Jose M.
    Franco, Leonardo
    Veredas, Francisco J.
    [J]. PLOS ONE, 2020, 15 (03):
  • [75] Dynamic Patterns of Threat-Associated Gene Expression in the Amygdala and Blood
    Lori, Adriana
    Maddox, Stephanie A.
    Sharma, Sumeet
    Andero, Raul
    Ressler, Kerry J.
    Smith, Alicia K.
    [J]. FRONTIERS IN PSYCHIATRY, 2019, 9
  • [76] From local explanations to global understanding with explainable AI for trees
    Lundberg, Scott M.
    Erion, Gabriel
    Chen, Hugh
    DeGrave, Alex
    Prutkin, Jordan M.
    Nair, Bala
    Katz, Ronit
    Himmelfarb, Jonathan
    Bansal, Nisha
    Lee, Su-In
    [J]. NATURE MACHINE INTELLIGENCE, 2020, 2 (01) : 56 - 67
  • [77] Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis
    Maglanoc, Luigi A.
    Kaufmann, Tobias
    Jonassen, Rune
    Hilland, Eva
    Beck, Dani
    Landro, Nils Inge
    Westlye, Lars T.
    [J]. HUMAN BRAIN MAPPING, 2020, 41 (01) : 241 - 255
  • [78] The cellular neurobiology of depression
    Manji, HK
    Drevets, WC
    Charney, DS
    [J]. NATURE MEDICINE, 2001, 7 (05) : 541 - 547
  • [79] Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies
    Marquand, Andre F.
    Rezek, Iead
    Buitelaar, Jan
    Beckmann, Christian F.
    [J]. BIOLOGICAL PSYCHIATRY, 2016, 80 (07) : 552 - 561
  • [80] Predicting Polygenic Risk of Psychiatric Disorders
    Martin, Alicia R.
    Daly, Mark J.
    Robinson, Elise B.
    Hyman, Steven E.
    Neale, Benjamin M.
    [J]. BIOLOGICAL PSYCHIATRY, 2019, 86 (02) : 97 - 109