Measuring the local quantum capacitance of graphene using a strongly coupled graphene nanoribbon

被引:12
|
作者
Bischoff, D. [1 ]
Eich, M. [1 ]
Varlet, A. [1 ]
Simonet, P. [1 ]
Ihn, T. [1 ]
Ensslin, K. [1 ]
机构
[1] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
BROKEN-SYMMETRY; COULOMB DRAG; CONFINEMENT; TRANSPORT; STATES;
D O I
10.1103/PhysRevB.91.115441
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present electrical transport measurements of a van-der-Waals heterostructure consisting of a graphene nanoribbon separated by a thin boron nitride layer from a micron-sized graphene sheet. The interplay between the two layers is discussed in terms of screening or, alternatively, quantum capacitance. The ribbon can be tuned into the transport gap by applying gate voltages. Multiple sites of localized charge leading to Coulomb blockade are observed, in agreement with previous experiments. Due to the strong capacitive coupling between the ribbon and the graphene top layer sheet, the evolution of the Coulomb blockade peaks in gate voltages can be used to obtain the local density of states and therefore the quantum capacitance of the graphene top layer. Spatially varying density and doping are found, which are attributed to a spatial variation of the dielectric due to fabrication imperfections.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Modeling of Quantum Capacitance in Graphene Nanoribbon
    Johari, Zaharah
    Amin, N. Aziziah
    Ahmadi, Mohammad Taghi
    Chek, Desmond C. Y.
    Mousavi, S. Mahdi
    Ismail, Razali
    ENABLING SCIENCE AND NANOTECHNOLOGY, 2011, 1341 : 384 - 387
  • [2] Quantum capacitance in bilayer graphene nanoribbon
    Bhattacharya, Sitangshu
    Mahapatra, Santanu
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2012, 44 (7-8): : 1127 - 1131
  • [3] Layer Effect on Graphene Nanoribbon Quantum Capacitance
    Kiani, Mohammad Javad
    Ahmadi, M. T.
    Ravangard, S. A.
    Saeidmanesh, M.
    Ghadiry, Mandiar
    Harun, F. K. Che
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (10) : 2328 - 2331
  • [4] Quantum Capacitance of Hybrid Graphene Copper Nanoribbon
    Mohsin, K. M.
    Srivastava, A.
    Fahad, M. S.
    Khan, M. A.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2017, 6 (10) : M133 - M138
  • [5] Quantum capacitance of the armchair-edge graphene nanoribbon
    LING-FENG MAO
    Pramana, 2013, 81 : 309 - 317
  • [6] Strain effects on the quantum capacitance of graphene nanoribbon devices
    Kliros, George S.
    APPLIED SURFACE SCIENCE, 2020, 502 (502)
  • [7] Quantum capacitance of the armchair-edge graphene nanoribbon
    Mao, Ling-Feng
    PRAMANA-JOURNAL OF PHYSICS, 2013, 81 (02): : 309 - 317
  • [8] Modeling of Carrier Density and Quantum Capacitance in Graphene Nanoribbon FETs
    Kliros, George S.
    2010 INTERNATIONAL CONFERENCE ON MICROELECTRONICS, 2010, : 236 - 239
  • [9] Measuring quantum conductance and capacitance of graphene using impedance-derived capacitance spectroscopy
    Lopes, Lais C.
    Santos, Adriano
    Bueno, Paulo R.
    CARBON, 2021, 184 : 821 - 827
  • [10] Gas adsorption effect on the graphene nanoribbon band structure and quantum capacitance
    Pourasl, Ali H.
    Ahmadi, Mohammad Taghi
    Ismail, Razali
    Gharaei, Niayesh
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2017, 23 (06): : 767 - 777