Irreducible polynomials over GF(2) with prescribed coefficients

被引:18
作者
Yucas, JL [1 ]
Mullen, GL
机构
[1] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
finite fields; irreducible polynomials;
D O I
10.1016/S0012-365X(03)00092-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an even positive integer n, we determine formulas for the number of irreducible polynomials of degree n over GF(2) in which the coefficients of x(n-1), x(n-2) and x(n-3) are specified in advance. Formulas for the number of elements in GF(2(n)) with the first three traces specified are also given. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:265 / 279
页数:15
相关论文
共 10 条
[1]  
[Anonymous], SOVIET MATH DOKL
[2]   A THEOREM OF DICKSON ON IRREDUCIBLE POLYNOMIALS [J].
CARLITZ, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 3 (05) :693-700
[3]  
CATTELL K, IN PRESS J COMBIN MA
[4]   PRIMITIVE ELEMENTS AND POLYNOMIALS WITH ARBITRARY TRACE [J].
COHEN, SD .
DISCRETE MATHEMATICS, 1990, 83 (01) :1-7
[5]  
FITZGERALD RW, IN PRESS FINITE FIEL
[6]   Distribution of irreducible polynomials of small degrees over finite fields [J].
Ham, KH ;
Mullen, GL .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :337-341
[7]   PRIMITIVE POLYNOMIALS OVER FINITE-FIELDS [J].
HANSEN, T ;
MULLEN, GL .
MATHEMATICS OF COMPUTATION, 1992, 59 (200) :639-643
[8]  
Lidl R., 1983, FINITE FIELDS
[9]   The number of irreducible polynomials and Lyndon words with given trace [J].
Ruskey, F ;
Miers, CR ;
Sawada, J .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (02) :240-245
[10]   Generators and irreducible polynomials over finite fields [J].
Wan, DQ .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :1195-1212