One-pot preparation of Bi/Bi2WO6/reduced graphene oxide as a plasmonic photocatalyst with improved activity under visible light

被引:11
作者
Zhou, Yan [1 ]
Ren, Sushan [1 ]
Dong, Qimei [1 ]
Li, Yingying [1 ]
Ding, Hanming [1 ]
机构
[1] East China Normal Univ, Sch Chem & Mol Engn, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
ONE-STEP SYNTHESIS; LITHIUM-ION BATTERIES; BISMUTH NANOSTRUCTURES; HYDROGEN-PRODUCTION; BI2WO6; NANOSHEETS; TIO2; NANOCRYSTALS; BAND-STRUCTURE; PERFORMANCE; POLLUTANTS; NANOWIRES;
D O I
10.1039/c6ra20316g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel nanocomposite, Bi nanorods and Bi2WO6 nanosheets supported on reduced graphene oxide (Bi/Bi2WO6/rGO), was synthesized via a facile one-pot solvothermal method. In the reaction process, Bi2WO6 nanosheets and Bi nanorods were grown in situ on the rGO sheets, which were simultaneously achieved by the reduction of GO. Such a synthetic strategy can form effective close interfacial contacts and strong interactions among Bi2WO6, Bi and rGO, leading to efficient separation and transfer of photogenerated electron-hole pairs. As a result, the ternary plasmonic photocatalyst exhibits a much higher photocatalytic activity than pure Bi2WO6 and the binary composites in the photocatalytic degradation of rhodamine B and p-chlorophenol under visible light irradiation, which could be ascribed to the synergic effects of the improved electron-hole pair separation efficiency, enhanced visible-light harvesting and the good adsorptive capacity toward dye molecules.
引用
收藏
页码:102875 / 102885
页数:11
相关论文
共 65 条
[1]   Efficient Visible Light Photocatalytic Removal of NO with BiOBr-Graphene Nanocomposites [J].
Ai, Zhihui ;
Ho, Wingkei ;
Lee, Shuncheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (51) :25330-25337
[2]   In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light [J].
Bhirud, Ashwini P. ;
Sathaye, Shivaram D. ;
Waichal, Rupali P. ;
Ambekar, Jalindar D. ;
Park, Chan-J. ;
Kale, Bharat B. .
NANOSCALE, 2015, 7 (11) :5023-5034
[3]   Cu2(OH)PO4/g-C3N4 composite as an efficient visible light-activated photo-Fenton photocatalyst [J].
Chen, Changhong ;
Zhou, Yan ;
Wang, Ningning ;
Cheng, Linyu ;
Ding, Hanming .
RSC ADVANCES, 2015, 5 (116) :95523-95531
[4]   One-Step Synthesis of the Nanostructured AgI/BiOI Composites with Highly Enhanced Visible-Light Photocatalytic Performances [J].
Cheng, Hefeng ;
Huang, Baibiao ;
Dai, Ying ;
Qin, Xiaoyan ;
Zhang, Xiaoyang .
LANGMUIR, 2010, 26 (09) :6618-6624
[5]   An Advanced Semimetal-Organic Bi Spheres-g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification [J].
Dong, Fan ;
Zhao, Zaiwang ;
Sun, Yanjuan ;
Zhang, Yuxin ;
Yan, Shuai ;
Wu, Zhongbiao .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (20) :12432-12440
[6]   Noble Metal-Like Behavior of Plasmonic Bi Particles as a Cocatalyst Deposited on (BiO)2CO3 Microspheres for Efficient Visible Light Photocatalysis [J].
Dong, Fan ;
Li, Qiuyan ;
Sun, Yanjuan ;
Ho, Wing-Kei .
ACS CATALYSIS, 2014, 4 (12) :4341-4350
[7]   A semimetal bismuth element as a direct plasmonic photocatalyst [J].
Dong, Fan ;
Xiong, Ting ;
Sun, Yanjuan ;
Zhao, Zaiwang ;
Zhou, Ying ;
Feng, Xin ;
Wu, Zhongbiao .
CHEMICAL COMMUNICATIONS, 2014, 50 (72) :10386-10389
[8]   One-Pot Synthesis of Copper Sulfide Nanowires/Reduced Graphene Oxide Nanocomposites with Excellent Lithium-Storage Properties as Anode Materials for Lithium-Ion Batteries [J].
Feng, Caihong ;
Zhang, Le ;
Yang, Menghuan ;
Song, Xiangyun ;
Zhao, Hui ;
Jia, Zhe ;
Sun, Kening ;
Liu, Gao .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (29) :15726-15734
[9]   Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6 [J].
Fu, HB ;
Pan, CS ;
Yao, WQ ;
Zhu, YF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (47) :22432-22439
[10]   F, Ca co-doped TiO2 nanocrystals with enhanced photocatalytic activity [J].
Fu, Weiwei ;
Ding, Shuang ;
Wang, Ying ;
Wu, Lele ;
Zhang, Daming ;
Pan, Zhengwei ;
Wang, Runwei ;
Zhang, Zongtao ;
Qiu, Shilun .
DALTON TRANSACTIONS, 2014, 43 (43) :16160-16163