Iron and manganese based magnetocaloric materials for near room temperature thermal management

被引:128
作者
Chaudhary, V. [1 ,2 ,3 ]
Chen, X. [3 ]
Ramanujan, R. V. [3 ,4 ]
机构
[1] Nanyang Technol Univ, IGS, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Energy Res Inst NTU, Singapore 637553, Singapore
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[4] SHARE, Nanomat Energy & Energy Water Nexus NEW, Campus Res Excellence & Technol Enterprise, Singapore 138602, Singapore
基金
新加坡国家研究基金会;
关键词
Magnetocaloric materials; Magnetocaloric effect; Fe based alloys; Mn based alloys; Modeling; MAGNETIC ENTROPY CHANGE; CURIE-TEMPERATURE; PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; THERMOMAGNETIC CONVECTION; 1ST-ORDER TRANSITION; DISTRIBUTED EXCHANGE; AMORPHOUS-ALLOYS; METALLIC GLASSES; HEAT-TREATMENT;
D O I
10.1016/j.pmatsci.2018.09.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermal management technology based on the magnetocaloric effect offers several advantages over conventional gas compression cooling. The efficiency of magnetic cooling systems can be much higher than conventional gas based cooling technologies. Additionally, ozone layer depleting chemicals are not used and there is reduced noise and vibrations. Iron and manganese based magnetocaloric materials (MCM) are promising due to the challenges surrounding the use of conventional rare earth based MCM. We review the recent progress in the development of iron and manganese based MCM. The magnetic phase transitions, processing techniques, performance, as well as applications of these materials are discussed. Critical analysis to determine the critical exponents and phase transition behavior of these MCM, using modified Arrot plot, critical isotherm plots, the Kouvel-Fisher method, Landau theory and the Bean-Rodbell model, is also presented.
引用
收藏
页码:64 / 98
页数:35
相关论文
共 247 条
[1]  
Ajaya KN, 2009, J PHYS D, V42
[2]   Chains of Magnetosomes Extracted from AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy [J].
Alphandery, Edouard ;
Faure, Stephanie ;
Seksek, Olivier ;
Guyot, Francois ;
Chebbi, Imene .
ACS NANO, 2011, 5 (08) :6279-6296
[3]   Magneto-caloric effect in FeZrB amorphous alloys near room temperature [J].
Alvarez, Pablo ;
Sanchez Marcos, Jorge ;
Gorria, Pedro ;
Fernandez Barquin, Luis ;
Blanco, Jesus A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 504 :S150-S154
[4]   The role of boron on the magneto-caloric effect of FeZrB metallic glasses [J].
Alvarez, Pablo ;
Gorria, Pedro ;
Sanchez Marcos, Jorge ;
Fernandez Barquin, Luis ;
Blanco, Jesus A. .
INTERMETALLICS, 2010, 18 (12) :2464-2467
[5]   Adiabatic magnetocaloric effect in Ni50Mn35In15 ribbons [J].
Alvarez-Alonso, P. ;
Aguilar-Ortiz, C. O. ;
Camarillo, J. P. ;
Salazar, D. ;
Flores-Zuniga, H. ;
Chernenko, V. A. .
APPLIED PHYSICS LETTERS, 2016, 109 (21)
[6]   On the broadening of the magnetic entropy change due to Curie temperature distribution [J].
Alvarez-Alonso, Pablo ;
Sanchez Llamazares, Jose L. ;
Sanchez-Valdes, Cesar F. ;
Cuello, Gabriel J. ;
Franco, Victorino ;
Gorria, Pedro ;
Blanco, Jesus A. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)
[7]   Magnetovolume and magnetocaloric effects in Er2Fe17 [J].
Alvarez-Alonso, Pablo ;
Gorria, Pedro ;
Blanco, Jesus A. ;
Sanchez-Marcos, Jorge ;
Cuello, Gabriel J. ;
Puente-Orench, Ines ;
Alberto Rodriguez-Velamazan, Jose ;
Garbarino, Gaston ;
de Pedro, Imanol ;
Rodriguez Fernandez, Jesus ;
Sanchez Llamazares, Jose L. .
PHYSICAL REVIEW B, 2012, 86 (18)
[8]   A mean-field scaling method for first- and second-order phase transition ferromagnets and its application in magnetocaloric studies [J].
Amaral, J. S. ;
Silva, N. J. O. ;
Amaral, V. S. .
APPLIED PHYSICS LETTERS, 2007, 91 (17)
[9]  
[Anonymous], 1990, Binary Alloy Phase Diagrams, V2nd
[10]   Magnetic refrigeration: a promising new technology for energy saving [J].
Aprea, C. ;
Greco, A. ;
Maiorino, A. .
INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2016, 37 (03) :294-313