SPARSE SIGNAL RECOVERY METHODS FOR VARIANT DETECTION IN NEXT-GENERATION SEQUENCING DATA

被引:0
作者
Banuelos, Mario [1 ]
Almanza, Rubi [1 ]
Adhikari, Lasith [1 ]
Sindi, Suzanne [1 ]
Marcia, Roummel F. [1 ]
机构
[1] Univ Calif Merced, Appl Math, 5200 North Lake Rd, Merced, CA USA
来源
2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS | 2016年
基金
美国国家科学基金会;
关键词
Sparse signal recovery; convex optimization; next-generation sequencing data; structural variants; computational genomics;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Recent advances in high-throughput sequencing technologies have led to the collection of vast quantities of genomic data. Structural variants (SVs) - rearrangements of the genome larger than one letter such as inversions, insertions, deletions, and duplications - are an important source of genetic variation and have been implicated in some genetic diseases. However, inferring SVs from sequencing data has proven to be challenging because true SVs are rare and are prone to low-coverage noise. In this paper, we attempt to mitigate the deleterious effects of low-coverage sequences by following a maximum likelihood approach to SV prediction. Specifically, we model the noise using Poisson statistics and constrain the solution with a sparsity-promoting l(1) penalty since SV instances should be rare. In addition, because offspring SVs inherit SVs from their parents, we incorporate familial relationships in the optimization problem formulation to increase the likelihood of detecting true SV occurrences. Numerical results are presented to validate our proposed approach.
引用
收藏
页码:864 / 868
页数:5
相关论文
共 19 条
  • [1] A map of human genome variation from population-scale sequencing
    Altshuler, David
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Collins, Francis S.
    De la Vega, Francisco M.
    Donnelly, Peter
    Egholm, Michael
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Knoppers, Bartha M.
    Lander, Eric S.
    Lehrach, Hans
    Mardis, Elaine R.
    McVean, Gil A.
    Nickerson, DebbieA.
    Peltonen, Leena
    Schafer, Alan J.
    Sherry, Stephen T.
    Wang, Jun
    Wilson, Richard K.
    Gibbs, Richard A.
    Deiros, David
    Metzker, Mike
    Muzny, Donna
    Reid, Jeff
    Wheeler, David
    Wang, Jun
    Li, Jingxiang
    Jian, Min
    Li, Guoqing
    Li, Ruiqiang
    Liang, Huiqing
    Tian, Geng
    Wang, Bo
    Wang, Jian
    Wang, Wei
    Yang, Huanming
    Zhang, Xiuqing
    Zheng, Huisong
    Lander, Eric S.
    Altshuler, David L.
    Ambrogio, Lauren
    Bloom, Toby
    Cibulskis, Kristian
    Fennell, Tim J.
    Gabriel, Stacey B.
    [J]. NATURE, 2010, 467 (7319) : 1061 - 1073
  • [2] [Anonymous], 2009, P IEEE STAT SIGN PRO
  • [3] [Anonymous], P IEEE INT S BIOM IM
  • [4] 2-POINT STEP SIZE GRADIENT METHODS
    BARZILAI, J
    BORWEIN, JM
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) : 141 - 148
  • [5] Chen K, 2009, NAT METHODS, V6, P677, DOI [10.1038/NMETH.1363, 10.1038/nmeth.1363]
  • [6] This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms-Theory and Practice
    Harmany, Zachary T.
    Marcia, Roummel F.
    Willett, Rebecca M.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (03) : 1084 - 1096
  • [7] Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes
    Hormozdiari, Fereydoun
    Alkan, Can
    Eichler, Evan E.
    Sahinalp, S. Cenk
    [J]. GENOME RESEARCH, 2009, 19 (07) : 1270 - 1278
  • [8] Resequencing rice genomes: an emerging new era of rice genomics
    Huang, Xuehui
    Lu, Tingting
    Han, Bin
    [J]. TRENDS IN GENETICS, 2013, 29 (04) : 225 - 232
  • [9] LANDER E S, 1988, Genomics, V2, P231
  • [10] The 3,000 rice genomes project: new opportunities and challenges for future rice research
    Li, Jia-Yang
    Wang, Jun
    Zeigler, Robert S.
    [J]. GIGASCIENCE, 2014, 3