Machine-Learning a Solution for Reactive Atomistic Simulations of Energetic Materials

被引:10
|
作者
Lindsey, Rebecca K. [1 ]
Cong Huy Pham [1 ]
Goldman, Nir [1 ,2 ]
Bastea, Sorin [1 ]
Fried, Laurence E. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
[2] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA
关键词
atomistic simulations; machine learning; reactive force field; interatomic model; ChIMES; chemistry; FORCE-FIELDS; CARBON; SYSTEMS; MODELS; BULK; SET; HMX;
D O I
10.1002/prep.202200001
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Many of the safety and performance-related properties of energetic materials (EM) are related to complex condensed phase chemistry at extreme P,T conditions eluding direct experimental investigation. Atomistic simulations can play a vital role in generating insight into EM chemistry, but they rely critically on the availability of suitable interatomic potentials ("force fields"). The ChIMES machine learning approach enables generation of interatomic potentials for condensed phase reacting systems, with accuracy similar to Kohn-Sham density functional theory through its unique, highly flexible orthogonal basis set of interaction functions and systematically improvable many-body expansion of interatomic interactions. ChIMES has been successfully applied to a variety of systems including simple model energetic materials, both as a correction for simpler quantum theory and as a stand-alone interatomic potential. In this perspective, the successes and challenges of applying the ChIMES approach to the reactive molecular dynamics of energetic materials are outlined. Our machine-learned approach is general and can be applied to a variety of different application areas where atomic-level calculations can be used to help guide and elucidate experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Virtual Issue on Machine-Learning Discoveries in Materials Science
    Oliynyk, Anton O.
    Buriak, Jillian M.
    CHEMISTRY OF MATERIALS, 2019, 31 (20) : 8243 - 8247
  • [32] Active learning for robust, high-complexity reactive atomistic simulations
    Lindsey, Rebecca K.
    Fried, Laurence E.
    Goldman, Nir
    Bastea, Sorin
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (13):
  • [33] Mo-Si Alloys Studied by Atomistic Computer Simulations Using a Novel Machine-Learning Interatomic Potential: Thermodynamics and Interface Phenomena
    Lenchuk, Olena
    Rohrer, Jochen
    Albe, Karsten
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (17)
  • [34] Atomistic insights into the mechanical anisotropy and fragility of monolayer fullerene networks using quantum mechanical calculations and machine-learning molecular dynamics simulations
    Ying, Penghua
    Dong, Haikuan
    Liang, Ting
    Fan, Zheyong
    Zhong, Zheng
    Zhang, Jin
    EXTREME MECHANICS LETTERS, 2023, 58
  • [35] Reactive Potentials for Advanced Atomistic Simulations
    Liang, Tao
    Shin, Yun Kyung
    Cheng, Yu-Ting
    Yilmaz, Dundar E.
    Vishnu, Karthik Guda
    Verners, Osvalds
    Zou, Chenyu
    Phillpot, Simon R.
    Sinnott, Susan B.
    van Duin, Adri C. T.
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 43, 2013, 43 : 109 - 129
  • [36] Perspective: Atomistic simulations of water and aqueous systems with machine learning potentials
    Omranpour, Amir
    Montero De Hijes, Pablo
    Behler, Joerg
    Dellago, Christoph
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (17):
  • [37] Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques
    Sirunyan, A. M.
    Tumasyan, A.
    Adam, W.
    Ambrogi, F.
    Bergauer, T.
    Brandstetter, J.
    Dragicevic, M.
    Eroe, J.
    Del Valle, A. Escalante
    Flechl, M.
    Fruehwirth, R.
    Jeitler, M.
    Krammer, N.
    Kraetschmer, I
    Liko, D.
    Madlener, T.
    Mikulec, I
    Rad, N.
    Schieck, J.
    Schoefbeck, R.
    Spanring, M.
    Spitzbart, D.
    Waltenberger, W.
    Wulz, C-E
    Zarucki, M.
    Drugakov, V
    Mossolov, V
    Gonzalez, J. Suarez
    Darwish, M. R.
    De Wolf, E. A.
    Di Croce, D.
    Janssen, X.
    Lelek, A.
    Pieters, M.
    Sfar, H. Rejeb
    Van Haevermaet, H.
    Van Mechelen, P.
    Van Putte, S.
    Van Remortel, N.
    Blekman, F.
    Bols, E. S.
    Chhibra, S. S.
    D'Hondt, J.
    De Clercq, J.
    Lontkovskyi, D.
    Lowette, S.
    Marchesini, I
    Moortgat, S.
    Python, Q.
    Skovpen, K.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (06):
  • [38] Universal machine learning potential accelerates atomistic modeling of materials
    Zhongheng Fu
    Dawei Zhang
    Journal of Energy Chemistry, 2023, 83 (08) : 1 - 2
  • [39] Universal machine learning potential accelerates atomistic modeling of materials
    Fu, Zhongheng
    Zhang, Dawei
    JOURNAL OF ENERGY CHEMISTRY, 2023, 83 : 1 - 2
  • [40] When do short-range atomistic machine-learning models fall short?
    Yue, Shuwen
    Muniz, Maria Carolina
    Calegari Andrade, Marcos F.
    Zhang, Linfeng
    Car, Roberto
    Panagiotopoulos, Athanassios Z.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (03):