On the inverse sum indeg energy of trees

被引:0
作者
Hatefi, H. [1 ]
Ahangar, H. Abdollahzadeh [2 ]
Khoeilar, R. [1 ]
Sheikholeslami, S. M. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Babol Noshirvani Univ Technol, Dept Math, Shariati Ave, Babol 4714871167, Iran
关键词
Tree; inverse sum indeg index; inverse sum indeg energy; LOWER BOUNDS; MATRIX;
D O I
10.1142/S1793557122501765
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of order n and d(i) be the degree of the vertex v(i), for i = 1, 2, ..., n. The ISI matrix of G is the square matrix of order n whose (i, j)-entry is equal to d(i)d(j)/d(i)+d(j) if v(i) is adjacent to v(j), and zero otherwise. Let mu(1) > mu(2) > ... > mu(n), be the eigenvalues of ISI matrix. The ISI energy of a graph G, denoted by xi(ISI)(G), is defined as the sum of the absolute values of the eigenvalues of ISI matrix. In this paper, we prove that the star has the minimum ISI energy among trees.
引用
收藏
页数:19
相关论文
共 35 条
[21]   Inverse sum indeg index of graphs [J].
Pattabiraman, K. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (02) :155-167
[22]  
Prakasha K., 2017, Turk. J. Anal. Number Theory, V5, P202, DOI [10.12691/tjant-5-6-2, DOI 10.12691/TJANT-5-6-2]
[23]  
Rad NJ, 2018, MATCH-COMMUN MATH CO, V79, P371
[24]   On Zagreb energy and edge-Zagreb energy [J].
Ramanna, Rakshith Billava .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) :155-169
[25]  
Rather B.A., COMMUN COMB OPTIM
[26]   Spectral properties of geometric-arithmetic index [J].
Rodriguez, Jose M. ;
Sigarreta, Jose M. .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 277 :142-153
[27]   On the inverse sum indeg index [J].
Sedlar, Jelena ;
Stevanovi, Dragan ;
Vasilyev, Alexander .
DISCRETE APPLIED MATHEMATICS, 2015, 184 :202-212
[28]   The proof of a conjecture on the comparison of the energies of trees [J].
Shan, Hai-Ying ;
Shao, Jia-Yu .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2012, 50 (10) :2637-2647
[29]   The maximal geometric-arithmetic energy of trees with at most two branched vertices [J].
Shao, Yanling ;
Gao, Yubin .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
[30]   New bounds on the energy of a graph [J].
Shoshtari, Hajar ;
Rodriguez, Jonnathan .
COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (01) :81-90