Development of SERS tags for human diseases screening and detection

被引:61
作者
Gong, Tianxun [1 ]
Das, Chandreyee Manas [2 ]
Yin, Ming-Jie [3 ]
Lv, Tian-Run [3 ]
Singh, Nishtha Manish [2 ]
Soehartono, Alana M. [2 ]
Singh, Gurvinder [4 ,5 ,6 ]
An, Quan-Fu [3 ]
Yong, Ken-Tye [2 ,4 ,5 ,6 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Natl Exemplary Sch Microelect, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Beijing Univ Technol, Dept Environm & Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
[4] Univ Sydney, Sch Biomed Engn, Sydney, NSW 2006, Australia
[5] Univ Sydney, Univ Sydney Nano Inst, Sydney, NSW 2006, Australia
[6] Univ Sydney, Biophoton & MechanoBioengn Lab, Sydney, NSW 2006, Australia
基金
中国国家自然科学基金;
关键词
Nanoplasmonics; Raman spectroscopy; Metal nanoparticles; SERS tags; Diagnosis; Therapeutics; ENHANCED RAMAN-SCATTERING; SURFACE-PLASMON RESONANCE; ULTRA-SENSITIVE DETECTION; LATERAL FLOW IMMUNOASSAY; CIRCULATING TUMOR-CELLS; PHOTONIC-CRYSTAL FIBER; LABEL-FREE DETECTION; IN-VIVO; GOLD NANOPARTICLES; DNA DETECTION;
D O I
10.1016/j.ccr.2022.214711
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Recent advances in surface-enhanced Raman scattering (SERS) have offered great promise for the early -stage diagnosis of life-threatening diseases by in vivo sensing and imaging techniques as well as a treat-ment and evaluation of its efficacy. The SERS technique makes use of specially designed tags made up of a metallic nanoparticle, a Raman reporter molecule, a biocompatible protection layer, and a sensing layer, realizing the signal amplification by the electromagnetic enhancement (EE) originating from the plasmon excitation of metal nanostructures and chemical enhancement (CE) owing to chemical interactions and photon-induced charge transfer between the metal and target molecule. These SERS tags have been pro-ven to be a promising candidate for medical applications compared to other conventional techniques because of their high sensitivity, low detection limit, good selectivity, high photostability, low interfer-ences from biological matrices, and multiplexing capabilities. As a result, there has been a surge in the reports for developing SERS tags for molecular diagnostics, immunoassays, biomarker detection, and drug screening applications. Here, we review the recent progress made in the development of SERS tags, including the preparation strategies and properties of SERS tags. The multiple uses of SERS tags in the detection of biomarkers, proteins, cancer and stem cells, cell labeling drug delivery, photothermal ther-apy, and multimodal imaging techniques have also been reviewed and discussed. Finally, we provide a forward look at how SERS tags may overcome their limitations to guide future SERS tags design with clin-ical outcomes. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:31
相关论文
共 341 条
[1]   Plasmonic Photocatalytic Enhancement of L-Cysteine Self-Assembled Gold Nanoparticle Clusters for Fenton Reaction Catalysis [J].
Agrawal, Siddharth ;
Mysko, Ryan A. ;
Nigra, Michael M. ;
Mohanty, Swomitra K. ;
Hoepfner, Michael P. .
LANGMUIR, 2021, 37 (11) :3281-3287
[2]   A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles [J].
Aioub, Mena ;
El-Sayed, Mostafa A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (04) :1258-1264
[3]   Surface-enhanced Raman scattering for rapid hematopoietic stem cell differentiation analysis [J].
Alattar, Nebras ;
Daud, Hasbullah ;
Al-Majmaie, Rasoul ;
Zeulla, Domonic ;
Al-Rubeai, Mohameed ;
Rice, James H. .
APPLIED OPTICS, 2018, 57 (22) :E184-E189
[4]   Simultaneous Time-Dependent Surface-Enhanced Raman Spectroscopy, Metabolomics, and Proteomics Reveal Cancer Cell Death Mechanisms Associated with Gold Nanorod Photothermal Therapy [J].
Ali, Moustafa R. K. ;
Wu, Yue ;
Hang, Tiegang ;
Zang, Xiaoling ;
Xiao, Haopeng ;
Tang, Yan ;
Wu, Ronghu ;
Fernandez, Facundo M. ;
El-Sayed, Mostafa A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (47) :15434-15442
[5]   Surface Enhanced Raman Spectroscopy for Single Molecule Protein Detection [J].
Almehmadi, Lamyaa M. ;
Curley, Stephanie M. ;
Tokranova, Natalya A. ;
Tenenbaum, Scott A. ;
Lednev, Igor K. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[6]   Magneto-Plasmonic Au-Fe Alloy Nanoparticles Designed for Multimodal SERS-MRI-CT Imaging [J].
Amendola, Vincenzo ;
Scaramuzza, Stefano ;
Litti, Lucio ;
Meneghetti, Moreno ;
Zuccolotto, Gaia ;
Rosato, Antonio ;
Nicolato, Elena ;
Marzola, Pasquina ;
Fracasso, Giulio ;
Anselmi, Cristina ;
Pinto, Marcella ;
Colombatti, Marco .
SMALL, 2014, 10 (12) :2476-2486
[7]   Exploring How to Increase the Brightness of Surface-Enhanced Raman Spectroscopy Nanolabels: The Effect of the Raman-Active Molecules and of the Label Size [J].
Amendola, Vincenzo ;
Meneghetti, Moreno .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (02) :353-360
[8]   Surface-enhanced Raman spectroscopy detection of dopamine by DNA Targeting amplification assay in Parkisons's model [J].
An, Jeung Hee ;
Choi, Dong-Kug ;
Lee, Kwon-Jai ;
Choi, Jeong-Woo .
BIOSENSORS & BIOELECTRONICS, 2015, 67 :739-746
[9]   Alkyne-Tag SERS Screening and Identification of Small-Molecule-Binding Sites in Protein [J].
Ando, Jun ;
Asanuma, Miwako ;
Dodo, Kosuke ;
Yamakoshi, Hiroyuki ;
Kawata, Satoshi ;
Fujita, Katsumasa ;
Sodeoka, Mikiko .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (42) :13901-13910
[10]   Imaging of Liver Tumors Using Surface-Enhanced Raman Scattering Nanoparticles [J].
Andreou, Chrysafis ;
Neuschmelting, Volker ;
Tschaharganeh, Darjus-Felix ;
Huang, Chun-Hao ;
Oseledchyk, Anton ;
Iacono, Pasquale ;
Karabeber, Hazem ;
Colen, Rivka R. ;
Mannelli, Lorenzo ;
Lowe, Scott W. ;
Kircher, Moritz F. .
ACS NANO, 2016, 10 (05) :5015-5026