HILBERT-TYPE INEQUALITIES AND RELATED OPERATORS WITH HOMOGENEOUS KERNEL OF DEGREE 0

被引:0
作者
Yang Bicheng [1 ]
Krnic, Mario [2 ]
机构
[1] Guangdong Educ Inst, Dept Math, Guangzhou 510303, Guangdong, Peoples R China
[2] Fac Elect Engn & Comp, Zagreb 10000, Croatia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2010年 / 13卷 / 04期
关键词
Hilbert-type inequality; Hardy-Hilbert type inequality; Hilbert-type operator; homogeneous kernel; weight function; norm;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we provide an unified approach to the Hilbert-type inequalities with homogeneous kernel of degree 0 and certain weight functions. As an application, we define the related Hilbert-type operators and analyze their norms. In the case of conjugate exponents, we obtain the best possible constants involved in the right-hand sides of derived inequalities, and norms of the Hilbert-type operators as well. Finally, we consider some special choices of homogeneous kernels and parameters.
引用
收藏
页码:817 / 839
页数:23
相关论文
共 18 条
[1]  
[Anonymous], 1967, INEQUALITIES
[2]   Best constants for certain multilinear integral operators [J].
Benyi, Arpad ;
Oh, Choonghong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1)
[3]  
BICHENG Y, 2008, J INEQ PURE APPL MAT, V9, P1
[4]  
BICHENG Y, 2004, AUSTRAL J MATH ANAL, V1, P1
[5]  
BICHENG Y, 2005, MATH INEQUAL APPL, V8, P259
[6]  
BICHENG Y, 2007, J ZHEIJANG U, V24, P121
[7]  
BICHENG Y, 2009, NORM OPERATOR HILBER
[8]  
Bonsall F. F., 1951, Q J MATH OXFORD, V2, P135
[9]  
Cizmesija A, 2008, MATH INEQUAL APPL, V11, P237
[10]  
HARDY GH, 1925, P LONDON MATH SOC, V23