Stable systolic category of the product of spheres

被引:1
作者
Ryu, Hoil [1 ]
机构
[1] Kyushu Univ, Grad Sch Math, Nishi Ku, Fukuoka 8190395, Japan
关键词
FLAT CHAINS; MANIFOLDS;
D O I
10.2140/agt.2011.11.983
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stable systolic category of a closed manifold M indicates the complexity in the sense of volume. This is a homotopy invariant, even though it is defined by some relations between homological volumes on M. We show an equality of the stable systolic category and the real cup-length for the product of arbitrary finite dimensional real homology spheres. Also we prove the invariance of the stable systolic category under the rational equivalences for orientable 0-universal manifolds.
引用
收藏
页码:983 / 999
页数:17
相关论文
共 12 条
[1]  
Babenko I. K., 1992, Izv. Ross. Akad. Nauk Ser. Mat., V56, P707
[2]  
BERGER M, 1993, ASTERISQUE, P279
[3]   Stable systolic category of manifolds and the cup-length [J].
Dranishnikov, Alexander N. ;
Rudyak, Yuli B. .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 6 (01) :165-177
[4]   REAL FLAT CHAINS, COCHAINS AND VARIATIONAL PROBLEMS [J].
FEDERER, H .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (04) :351-407
[5]   NORMAL AND INTEGRAL CURRENTS [J].
FEDERER, H ;
FLEMING, WH .
ANNALS OF MATHEMATICS, 1960, 72 (03) :458-520
[6]  
Federer Herbert, 1969, GEOMETRIC MEASURE TH
[7]  
GROMOV M, 1983, J DIFFER GEOM, V18, P1
[8]   Bounding volume by systoles of 3-manifolds [J].
Katz, Mikhail G. ;
Rudyak, Yuli B. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 :407-417
[9]   Lusternik-Schnirelmann category and systolic category of low-dimensional manifolds [J].
Katz, Mikhail G. ;
Rudyak, Yuli B. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (10) :1433-1456
[10]   HOMOLOGIE SINGULIERE DES ESPACES FIBRES - APPLICATIONS [J].
SERRE, JP .
ANNALS OF MATHEMATICS, 1951, 54 (03) :425-505