Characterization of Simple Symplectic Groups of Degree 4 over Locally Finite Fields in the Class of Periodic Groups

被引:5
作者
Lytkina, D. V. [1 ,2 ]
Mazurov, V. D. [2 ,3 ]
机构
[1] Siberian State Univ Telecommun & Informat Sci, Ul Kirova 86, Novosibirsk 630102, Russia
[2] Novosibirsk State Univ, Ul Pirogova 1, Novosibirsk 630090, Russia
[3] Sobolev Inst Math, Pr Akad Koptyuga 4, Novosibirsk 630090, Russia
关键词
periodic group; locally finite field; simple symplectic group;
D O I
10.1007/s10469-018-9493-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a periodic group containing an element of order 2 such that each of its finite subgroups of even order lies in a finite subgroup isomorphic to a simple symplectic group of degree 4. It is shown that G is isomorphic to a simple symplectic group S-4(Q) of degree 4 over some locally finite field Q.
引用
收藏
页码:201 / 210
页数:10
相关论文
共 11 条
[1]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[2]  
Bray JN, 2013, LOND MATH S, V407, P1, DOI 10.1017/CBO9781139192576
[3]  
Cernikov SN, 1940, MAT SBORNIK, V7, P539
[4]   MONOMORPHISMS AND DIRECT LIMITS OF FINITE-GROUPS OF LIE TYPE [J].
HARTLEY, B ;
SHUTE, G .
QUARTERLY JOURNAL OF MATHEMATICS, 1984, 35 (137) :49-71
[5]  
Huppert B., 1979, GRUND MATH WISS, V1, P134
[6]  
Kleidman P.B., 1990, London Math. Soc. Lecture Note Ser., V129
[7]   Sylow 2-subgroups of the periodic groups saturated with finite simple groups [J].
Li, B. ;
Lytkina, D. V. .
SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (06) :1029-1033
[8]   The periodic groups saturated by finitely many finite simple groups [J].
Lytkina, D. V. ;
Tukhvatullina, L. R. ;
Filippov, K. A. .
SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (02) :317-321
[9]   Characterization of simple symplectic groups of degree 4 over locally finite fields of characteristic 2 in the class of periodic groups [J].
Lytkina, D. V. ;
Mazurov, V. D. .
SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (05) :850-858
[10]   Periodic groups saturated with the groups L2(pn) [J].
Rubashkin, AG ;
Filippov, KA .
SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (06) :1119-1122