Data Visualization Scenarios for the Analysis of Computational Evolutionary Techniques

被引:1
作者
Rosa Nassar dos Santos, Yuri Santa [1 ]
Meiguins, Aruanda Simoes [1 ]
dos Santos, Diego Hortencio [1 ]
Resque dos Santos, Carlos Gustavo [1 ]
de Morais, Jefferson Magalhaes [1 ]
Meiguins, Bianchi Serique [1 ]
机构
[1] Univ Fed Para, Programa Posgrad Ciencia Comp, Belem, Para, Brazil
来源
2019 23RD INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): BIOMEDICAL VISUALIZATION AND GEOMETRIC MODELLING & IMAGING | 2019年
关键词
Information Visualization; Visualization Techniques; Evolutionary Algorithms; CLUSTERING-ALGORITHM;
D O I
10.1109/IV.2019.00056
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
There has been an increasing demand to understand and describe Evolutionary Computing techniques. Information Visualization may contribute with interactive data visualizations that help explore the population of individual solutions over the data search space and generations, convergent behavior, individual fitness, the dynamic of the evolutionary process among other possible scenarios. Although there are previous works on the use of visualization to analyze evolutionary techniques, there has been little diversity among the approached visualization techniques. Also, most related works consider only genetic algorithms and ignore other evolutionary approaches. Therefore the goal of this paper is to suggest the appropriate InfoVis techniques for the analyzed scenarios to better understand the behavior of Evolutionary Computing algorithms. Furthermore, we present a case study that applies the proposed scenarios to AutoClustering, a tool based on Estimation of Distribution Algorithms. We hope the proposed scenarios and techniques provide a set of good practices for the analysis of Evolutionary Computing techniques.
引用
收藏
页码:292 / 299
页数:8
相关论文
共 34 条
[1]  
Angiulli F, 2004, LECT NOTES COMPUT SC, V3177, P203
[2]  
[Anonymous], 2015, P COMPANION PUBLICAT
[3]  
Bashir Uzair, 2017, INT J NETWORK SECURI
[4]   REPLICATING CLUSTER-ANALYSIS - METHOD, CONSISTENCY, AND VALIDITY [J].
BRECKENRIDGE, JN .
MULTIVARIATE BEHAVIORAL RESEARCH, 1989, 24 (02) :147-161
[5]  
Chabin T., 2017, INT C ART EV EV ART, P189
[6]   A Clustering-based Visual Analysis Tool for Genetic Algorithm [J].
Daneshpajouh, Habib ;
Zakaria, Nordin .
PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 3, 2017, :233-240
[7]  
Ding JJ, 2016, CHIN CONTR CONF, P7169, DOI 10.1109/ChiCC.2016.7554490
[8]   A Prototype Application to Generate Synthetic Datasets for Information Visualization Evaluations [J].
dos Santos Brito, Yvan Pereira ;
Resque dos Santos, Carlos Gustavo ;
Mendonca, Sandro de Paula ;
Oliveira de Araujo, Tiago Davi ;
de Freitas, Alexandre Abreu ;
Meiguins, Bianchi Serique .
2018 22ND INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2018, :153-158
[9]  
Egger Thomas, 2003, INT ACM SOFTVIS, V3
[10]  
Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226