Dark Matter as a Non-Relativistic Bose-Einstein Condensate with Massive Gravitons

被引:9
|
作者
Kun, Emma [1 ]
Keresztes, Zoltan [1 ]
Das, Saurya [2 ,3 ]
Gergely, Laszlo A. [1 ]
机构
[1] Univ Szeged, Inst Phys, Dom Ter 9, H-6720 Szeged, Hungary
[2] Univ Lethbridge, Theoret Phys Grp, 4401 Univ Dr, Lethbridge, AB T1K 3M4, Canada
[3] Univ Lethbridge, Quantum Alberta, Dept Phys & Astron, 4401 Univ Dr, Lethbridge, AB T1K 3M4, Canada
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
dark matter; galactic rotation curve; GROSS-PITAEVSKII EQUATION; UNIVERSE; VORTEX; STATE; DISKS;
D O I
10.3390/sym10100520
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We confront a non-relativistic Bose-Einstein Condensate (BEC) model of light bosons interacting gravitationally either through a Newtonian or a Yukawa potential with the observed rotational curves of 12 dwarf galaxies. The baryonic component is modeled as an axisymmetric exponential disk and its characteristics are derived from the surface luminosity profile of the galaxies. The purely baryonic fit is unsatisfactory, hence a dark matter component is clearly needed. The rotational curves of five galaxies could be explained with high confidence level by the BEC model. For these galaxies, we derive: (i) upper limits for the allowed graviton mass; and (ii) constraints on a velocity-type and a density-type quantity characterizing the BEC, both being expressed in terms of the BEC particle mass, scattering length and chemical potential. The upper limit for the graviton mass is of the order of 10(-26) eV/c(2), three orders of magnitude stronger than the limit derived from recent gravitational wave detections.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Gravitational waves as a new probe of Bose-Einstein condensate Dark Matter
    Dev, P. S. Bhupal
    Lindner, Manfred
    Ohmer, Sebastian
    PHYSICS LETTERS B, 2017, 773 : 219 - 224
  • [22] A Review on the Scalar Field/Bose-Einstein Condensate Dark Matter Model
    Suarez, Abril
    Robles, Victor H.
    Matos, Tonatiuh
    ACCELERATED COSMIC EXPANSION, 2014, 38 : 107 - 142
  • [23] Growth of perturbations in an expanding universe with Bose-Einstein condensate dark matter
    Chavanis, P. H.
    ASTRONOMY & ASTROPHYSICS, 2012, 537
  • [24] Evolution and dynamical properties of Bose-Einstein condensate dark matter stars
    Madarassy, Eniko J. M.
    Toth, Viktor T.
    PHYSICAL REVIEW D, 2015, 91 (04):
  • [25] Gravitating polarons in Bose-Einstein condensate: a contribution to the dark matter substance?
    Mardonov, Sh N.
    Ahmedov, B. J.
    Sherman, E. Ya
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (08):
  • [26] Extended Bose-Einstein condensate dark matter in f(Q) gravity
    Bhat, Aaqid
    Solanki, Raja
    Sahoo, P. K.
    GENERAL RELATIVITY AND GRAVITATION, 2024, 56 (05)
  • [27] A review on the scalar field/bose-einstein condensate dark matter model
    20151600758412
    (1) Departamento de Física, Centro de Investigación y de Estudios Avanzados del I. P. N, Apdo. 14-740, D.F. México, Mexico, COECyTJAL - Universidad de Guadalajara; ICTP-Trieste (Kluwer Academic Publishers):
  • [28] Relativistic Bose-Einstein condensate in the rainbow gravity
    Furtado, J.
    Assuncao, J. F.
    Muniz, C. R.
    EPL, 2022, 139 (02)
  • [29] Bose-Einstein condensate general relativistic stars
    Chavanis, Pierre-Henri
    Harko, Tiberiu
    PHYSICAL REVIEW D, 2012, 86 (06):
  • [30] Kinetic approach to a relativistic Bose-Einstein condensate
    Meistrenko, Alex
    van Hees, Hendrik
    Zhou, Kai
    Greiner, Carsten
    PHYSICAL REVIEW E, 2016, 93 (03)