Electrochemical CO2reduction on Pd-modified Cu foil

被引:7
作者
Sun, Zhi-juan
Sartin, Matthew M. [2 ]
Chen, Wei
He, Fan
Cai, Jun
Ye, Xu-xu
Lu, Jun-ling
Chen, Yan-xia [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Collaborat Innovat Ctr Chem Energy Mat iChEM, Coll Chem & Chem Engn,MOE Key Lab Spectrochem Ana, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; CH band; CuPd activity; Differential electrochemical mass spectrometry; Attenuated total reflection Fourier transform infrared spectroscopy; INFRARED-ABSORPTION SPECTROSCOPY; CARBON-DIOXIDE; CO2; REDUCTION; COPPER ELECTRODE; ADSORPTION; ELECTROREDUCTION; INTERMEDIATE; HYDROCARBONS; BICARBONATE; CONVERSION;
D O I
10.1063/1674-0068/cjcp1904081
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Bimetallic catalysts can improve CO(2)reduction efficiency via the combined properties of two metals. CuPd shows enhanced CO(2)reduction activity compared to copper alone. Using differential electrochemical mass spectrometry (DEMS) and electrochemical infrared (IR) spectroscopy, volatile products and adsorbed intermediates were measured during CO(2)and CO reduction on Cu and CuPd. The IR band corresponding to adsorbed CO appears 300 mV more positive on CuPd than that on Cu, indicating acceleration of CO(2)reduction to CO. Electrochemical IR spectroscopy measurements in CO-saturated solutions reveal similar potentials for CO adsorption and CO(3)(2-)desorption on CuPd and Cu, indicating that CO adsorption is controlled by desorption of CO32-. DEMS measurements carried out during CO reduction at both electrodes showed that the onset potential for reduction of CO to CH(4)and CH3OH on CuPd is about 200 mV more positive than that on Cu. We attribute these improvements to interaction of Cu and Pd, which shifts the d-band center of the Cu sites.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 50 条
  • [41] Cu-Sn Aerogels for Electrochemical CO2 Reduction with High CO Selectivity
    Pan, Yexin
    Wu, Muchen
    Ye, Ziran
    Tang, Haibin
    Hong, Zhanglian
    Zhi, Mingjia
    MOLECULES, 2023, 28 (03):
  • [42] Role of a Hydroxide Layer on Cu Electrodes in Electrochemical CO2 Reduction
    Iijima, Go
    Inomata, Tomohiko
    Yamaguchi, Hitoshi
    Ito, Miho
    Masuda, Hideki
    ACS CATALYSIS, 2019, 9 (07): : 6305 - 6319
  • [43] Electrochemical Reduction of CO2 Using Copper Single-Crystal Surfaces: Effects of CO* Coverage on the Selective Formation of Ethylene
    Huang, Yun
    Handoko, Albertus D.
    Hirunsit, Pussana
    Yeo, Boon Siang
    ACS CATALYSIS, 2017, 7 (03): : 1749 - 1756
  • [44] Template-Free Cu Electrodeposition to Prepare Cu-Micro-Brush Electrodes for Electrochemical CO2 Reduction
    Gu, Yueyuan
    Li, Jindong
    Wang, Luyang
    Xie, Mengru
    Wu, Xu
    Xie, Fang
    Ryan, Mary P.
    CHEMISTRYSELECT, 2019, 4 (37): : 10995 - 11001
  • [45] Highly Selective Methane Production Through Electrochemical CO2 reduction by Electrolytically Plated Cu-Co Electrode
    Takatsuji, Yoshiyuki
    Nakata, Ikumi
    Morimoto, Masayuki
    Sakakura, Tatsuya
    Yamasaki, Ryota
    Haruyama, Tetsuya
    ELECTROCATALYSIS, 2019, 10 (01) : 29 - 34
  • [46] Electrochemical CO2 Reduction in the Presence of Impurities: Influences and Mitigation Strategies
    Harmon, Nia J.
    Wang, Hailiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (12)
  • [47] Electrochemical Reduction of CO2 at Copper Nanofoams
    Sen, Sujat
    Liu, Dan
    Palmore, G. Tayhas R.
    ACS CATALYSIS, 2014, 4 (09): : 3091 - 3095
  • [48] Metal-ligand bond strength determines the fate of organic ligands on the catalyst surface during the electrochemical CO2reduction reaction
    Pankhurst, James R.
    Iyengar, Pranit
    Loiudice, Anna
    Mensi, Mounir
    Buonsanti, Raffaella
    CHEMICAL SCIENCE, 2020, 11 (34) : 9296 - 9302
  • [49] From low to high-index facets of noble metal nanocrystals: a way forward to enhance the performance of electrochemical CO2reduction
    Woldu, Abebe Reda
    NANOSCALE, 2020, 12 (16) : 8626 - 8635
  • [50] A highly efficient diatomic nickel electrocatalyst for CO2reduction
    Sun, Meng-Jiao
    Gong, Zhi-Wei
    Yi, Jun-Dong
    Zhang, Teng
    Chen, Xiaodong
    Cao, Rong
    CHEMICAL COMMUNICATIONS, 2020, 56 (62) : 8798 - 8801