Pulmonary nodule detection on computed tomography using neuro-evolutionary scheme

被引:13
作者
Huidrom, Ratishchandra [1 ]
Chanu, Yambem Jina [1 ]
Singh, Khumanthem Manglem [1 ]
机构
[1] Natl Inst Technol, Imphal, Manipur, India
关键词
Nodule detection; Computer aided detection; Lung cancer; Multiple discriminant features; Genetic algorithm; Particle swarm optimization; LUNG NODULES; AIDED DETECTION; DETECTION SYSTEM; CT; DIAGNOSIS; IMAGES;
D O I
10.1007/s11760-018-1327-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Pulmonary nodule detection is an image processing approach to detect lung cancer from thoracic computed tomography (CT) images. Lung segmentation is the first step to segment lung regions from CT images. Nodule candidates are detected from the segmented lung regions. Further, nodule classification is performed to identify the true nodules from the false positives. In a recent paper, linear discriminant analysis (LDA) shows better performance than quadratic discriminant analysis for nodule classification. In the proposed method, the performance of the existing LDA method is improved by introducing additional discriminant features extracted by using multiple discriminant analysis. Further, a noble nonlinear classifier is used to overcome the limitation of the linear classifier. For the nonlinear classification, multilayer perceptron is used using a new powerful learning algorithm. The new learning algorithm is a combination of genetic algorithm (GA) and particle swarm optimization. Finally, the performance of the proposed method is compared with the existing LDA and convolutional neural network methods. The new learning algorithm of the proposed method is also compared with backpropagation (BP) and GA optimized BP algorithms. The overall performance of the proposed method is remarkable.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 2016, COMPUTATIONAL MATH M
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   Pulmonary nodules at chest CT: Effect of computer-aided diagnosis on radiologists' detection performance [J].
Awai, K ;
Murao, K ;
Ozawa, A ;
Komi, M ;
Hayakawa, H ;
Hori, S ;
Nishimura, Y .
RADIOLOGY, 2004, 230 (02) :347-352
[4]  
Bai JJ, 2015, I S BIOMED IMAGING, P1135, DOI 10.1109/ISBI.2015.7164072
[5]   Patient-specific models for lung nodule detection and surveillance in CT images [J].
Brown, MS ;
McNitt-Gray, MF ;
Goldin, JG ;
Suh, RD ;
Sayre, JW ;
Aberle, DR .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (12) :1242-1250
[6]   An introduction to genetic algorithms [J].
Deb, K .
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 1999, 24 (4-5) :293-315
[7]  
El-Baz A, 2013, INT J BIOMED IMAGING, V2013, DOI [10.1155/2013/517632, 10.1155/2013/942353]
[8]   Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system [J].
Gurcan, MN ;
Sahiner, B ;
Petrick, N ;
Chan, HP ;
Kazerooni, EA ;
Cascade, PN ;
Hadjiiski, L .
MEDICAL PHYSICS, 2002, 29 (11) :2552-2558
[9]  
Han H, 2013, IEEE NUCL SCI CONF R
[10]   Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs [J].
Hardie, Russell C. ;
Rogers, Steven K. ;
Wilson, Terry ;
Rogers, Adam .
MEDICAL IMAGE ANALYSIS, 2008, 12 (03) :240-258