A matroid-friendly basis for the quasisymmetric functions

被引:9
作者
Luoto, Kurt W. [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
matroid; quasisymmetric function; matroid polytope; Hopf algebra; labelled poset;
D O I
10.1016/j.jcta.2007.10.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new Z-basis for the space of quasisymmetric functions (QSym, for short) is presented. it is shown to have nonnegative structure constants, and several interesting properties relative to the quasisymmetric functions associated to matroids by the Hopf algebra morphism F of Billera, Jia, and Reiner [L.J. Billera, N. Jia, V. Reiner, A quasisymmetric function for matroids, arXiv:math.CO/0606646]. In particular, for loopless matroids, this basis reflects the grading by matroid rank, as well as by the size of the ground set. It is shown that the morphism F distinguishes isomorphism classes of rank two matroids, and that decomposability of the quasisymmetric function of a rank two matroid mirrors the decomposability of its base polytope. An affirmative answer to the Hilbert basis question raised in [L.J. Billera, N. Jia, V. Reiner, A quasisymmetric function for matroids, arXiv:math.CO/0606646] is given. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:777 / 798
页数:22
相关论文
共 19 条
[1]   Combinatorial Hopf algebras and generalized Dehn-Sommerville relations [J].
Aguiar, M ;
Bergeron, N ;
Sottile, F .
COMPOSITIO MATHEMATICA, 2006, 142 (01) :1-30
[2]  
[Anonymous], ENUMERATIVE COMBINAT
[3]  
Barvinok A., 2002, Grad. Stud. Math, V54
[4]  
BILLERA LJ, ARXIVMATHCO0606646
[5]   A unique factorization theorem for matroids [J].
Crapo, H ;
Schmitt, W .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 112 (02) :222-249
[6]   A free subalgebra of the algebra of matroids [J].
Crapo, H ;
Schmitt, W .
EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (07) :1066-1085
[7]   The free product of matroids [J].
Crapo, H ;
Schmitt, W .
EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (07) :1060-1065
[8]  
CRAPO H, ARXIVMATHCO0511033
[9]  
Dascaescu S, 2001, HOPF ALGEBRAS INTRO, V235
[10]   COMBINATORIAL GEOMETRIES AND TORUS STRATA ON HOMOGENEOUS COMPACT MANIFOLDS [J].
GELFAND, IM ;
SERGANOVA, VV .
RUSSIAN MATHEMATICAL SURVEYS, 1987, 42 (02) :133-168