Cellular Architecture on Whole Slide Images Allows the Prediction of Survival in Lung Adenocarcinoma

被引:6
作者
Chen, Pingjun [1 ]
Saad, Maliazurina B. [1 ]
Rojas, Frank R. [2 ]
Salehjahromi, Morteza [1 ]
Aminu, Muhammad [1 ]
Bandyopadhyay, Rukhmini [1 ]
Hong, Lingzhi [1 ,3 ]
Ebare, Kingsley [4 ]
Behrens, Carmen [3 ]
Gibbons, Don L. [3 ]
Kalhor, Neda [4 ]
Heymach, John, V [3 ]
Wistuba, Ignacio I. [2 ]
Soto, Luisa M. Solis [2 ]
Zhang, Jianjun [3 ,5 ]
Wu, Jia [1 ,3 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Imaging Phys, Div Diagnost Imaging, Houston, TX 77030 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Translat Mol Pathol, Houston, TX 77030 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Thorac Head & Neck Med Oncol, Houston, TX 77030 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Pathol, Houston, TX 77030 USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Genom Med, Houston, TX 77030 USA
来源
COMPUTATIONAL MATHEMATICS MODELING IN CANCER ANALYSIS, CMMCA 2022 | 2022年 / 13574卷
关键词
Cell architecture; Whole slide image; Nuclei classification; Lung adenocarcinoma; Survival analysis; CARCINOMA; DIAGNOSIS; FRAMEWORK;
D O I
10.1007/978-3-031-17266-3_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pathology is the gold standard for cancer diagnosis. Numerous studies aim to automate the diagnosis based on digital slides, yet its prognostic utilities lack adequate investigation. Besides the inherent difficulties in predicting a patient's prognosis, extracting informative features from gigapixel and heterogeneous whole slide images (WSI) remains an open challenge. We present a computational pipeline that can generate an embedded map to flexibly profile different cell populations' local and global composition and architecture on WSIs. Our approach allows researchers to investigate tumor cells and tumor microenvironment based on these embedded maps of a reasonable size rather than dealing with gigantic WSIs. Here, we applied this pipeline to extract the texture patterns for tumor and immune cell types on the TCGA lung adenocarcinoma dataset. Based on extensive survival modeling, we have demonstrated that by pruning redundant and irrelevant features, the final prediction model has achieved an optimal C-index of 0.70 during testing. Our proof-of-concept study proves that the efficient local-global embedded maps bear valuable information with clinical correlations in lung cancer and potentially in other cancer types, warranting further investigations.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 22 条
[1]   A time-dependent discrimination index for survival data [J].
Antolini, L ;
Boracchi, P ;
Biganzoli, E .
STATISTICS IN MEDICINE, 2005, 24 (24) :3927-3944
[2]   Cutoff Finder: A Comprehensive and Straightforward Web Application Enabling Rapid Biomarker Cutoff Optimization [J].
Budczies, Jan ;
Klauschen, Frederick ;
Sinn, Bruno V. ;
Gyoerffy, Balazs ;
Schmitt, Wolfgang D. ;
Darb-Esfahani, Silvia ;
Denkert, Carsten .
PLOS ONE, 2012, 7 (12)
[3]   Automatic whole slide pathology image diagnosis framework via unit stochastic selection and attention fusion [J].
Chen, Pingjun ;
Liang, Yun ;
Shi, Xiaoshuang ;
Yang, Lin ;
Gader, Paul .
NEUROCOMPUTING, 2021, 453 :312-325
[4]   Interactive thyroid whole slide image diagnostic system using deep representation [J].
Chen, Pingjun ;
Shi, Xiaoshuang ;
Liang, Yun ;
Li, Yuan ;
Yang, Lin ;
Gader, Paul D. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 195
[5]   Weakly Supervised Framework for Cancer Region Detection of Hepatocellular Carcinoma in Whole-Slide Pathologic Images Based on Multiscale Attention Convolutional Neural Network [J].
Diao, Songhui ;
Tian, Yinli ;
Hu, Wanming ;
Hou, Jiaxin ;
Lambo, Ricardo ;
Zhang, Zhicheng ;
Xie, Yaoqin ;
Nie, Xiu ;
Zhang, Fa ;
Racoceanu, Daniel ;
Qin, Wenjian .
AMERICAN JOURNAL OF PATHOLOGY, 2022, 192 (03) :553-563
[6]   Computer-Aided Pathologic Diagnosis of Nasopharyngeal Carcinoma Based on Deep Learning [J].
Diao, Songhui ;
Hou, Jiaxin ;
Yu, Hong ;
Zhao, Xia ;
Sun, Yikang ;
Lambo, Ricardo Lewis ;
Xie, Yaoqin ;
Liu, Lei ;
Qin, Wenjian ;
Luo, Weiren .
AMERICAN JOURNAL OF PATHOLOGY, 2020, 190 (08) :1691-1700
[7]   Artificial intelligence strategy integrating morphologic and architectural biomarkers provides robust diagnostic accuracy for disease progression in chronic lymphocytic leukemia [J].
El Hussein, Siba ;
Chen, Pingjun ;
Medeiros, L. Jeffrey ;
Wistuba, Ignacio I. ;
Jaffray, David ;
Wu, Jia ;
Khoury, Joseph D. .
JOURNAL OF PATHOLOGY, 2022, 256 (01) :4-14
[8]  
Gamper Jevgenij, 2019, Digital Pathology. 15th European Congress, ECDP 2019. Proceedings: Lecture Notes in Computer Science (LNCS 11435), P11, DOI 10.1007/978-3-030-23937-4_2
[9]   Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images [J].
Graham, Simon ;
Quoc Dang Vu ;
Raza, Shan E. Ahmed ;
Azam, Ayesha ;
Tsang, Yee Wah ;
Kwak, Jin Tae ;
Rajpoot, Nasir .
MEDICAL IMAGE ANALYSIS, 2019, 58
[10]   TEXTURAL FEATURES FOR IMAGE CLASSIFICATION [J].
HARALICK, RM ;
SHANMUGAM, K ;
DINSTEIN, I .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1973, SMC3 (06) :610-621