Global solution for a stochastic Ginzburg-Landau equation with multiplicative noise

被引:23
作者
Barton-Smith, M
机构
[1] Univ Paris 11, Anal Numer Lab, F-91405 Orsay, France
[2] Univ Paris 11, EDP Orsay, F-91405 Orsay, France
关键词
Ginzburg-Landau equations; stochastic partial differential equations; multiplicative noise;
D O I
10.1081/SAP-120028020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is about stochastic complex Ginzburg-Landau equations with a multiplicative white noise. Existence of global solutions are proved in the same conditions as in the deterministic case.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 20 条
[1]  
[Anonymous], 1995, STOCH STOCH REP, DOI DOI 10.1080/17442509508833962
[2]   TEMPERATURE EFFECTS IN A NONLINEAR MODEL OF MONOLAYER SCHEIBE AGGREGATES [J].
BANG, O ;
CHRISTIANSEN, PL ;
IF, F ;
RASMUSSEN, KO ;
GAIDIDEI, YB .
PHYSICAL REVIEW E, 1994, 49 (05) :4627-4636
[3]  
Bang O., 1995, Applicable Analysis, V57, P3, DOI 10.1080/00036819508840335
[4]  
BARTONSMITHM, 2003, NODEA, V10, P95
[5]   Inviscid limits of the complex Ginzburg-Landau equation [J].
Bechouche, P ;
Jüngel, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :201-226
[6]  
Brzeniak Z., 1997, Stoch. Stoch. Rep, V61, P245, DOI [10.1080/17442509708834122, DOI 10.1080/17442509708834122]
[7]   Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process [J].
Brzezniak, Z ;
Peszat, S .
STUDIA MATHEMATICA, 1999, 137 (03) :261-299
[8]   Cahn-Hilliard stochastic equation: existence of the solution and of its density [J].
Cardon-Weber, C .
BERNOULLI, 2001, 7 (05) :777-816
[9]  
Cazenave T., 1996, INTRO NONLINEAR SCHR, V3rd
[10]  
DAPRATO G, ENCY MATH