Probing protein-lipid interactions by FRET between membrane fluorophores

被引:2
|
作者
Trusova, Valeriya M. [1 ]
Gorbenko, Galyna P. [1 ]
Deligeorgiev, Todor [2 ]
Gadjev, Nikolai [2 ]
机构
[1] Kharkov Natl Univ, Dept Nucl & Med Phys, 4 Svobody Sq, UA-61022 Kharkov, Ukraine
[2] Univ Sofia, Fac Chem, Dept Appl Organ Chem, Sofia 1164, Bulgaria
来源
关键词
Forster resonance energy transfer; Monte-Carlo simulation; protein-lipid interactions; lysozyme; liposomes; RESONANCE ENERGY-TRANSFER; LARGE-LIGAND ADSORPTION; MAJOR COAT PROTEIN; TRANSMEMBRANE HELIX; LIVING CELLS; FLUORESCENCE; SYSTEMS; MODEL; ASSOCIATION; PARTITION;
D O I
10.1088/2050-6120/4/3/034014
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Forster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Membrane Protein-Lipid Interactions Probed Using Mass Spectrometry
    Bolla, Jani Reddy
    Agasid, Mark T.
    Mehmood, Shahid
    Robinson, Carol V.
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 88, 2019, 88 : 85 - 111
  • [22] Lipid polymorphism and protein-lipid interactions
    Epand, RM
    BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON BIOMEMBRANES, 1998, 1376 (03): : 353 - 368
  • [23] The Role of Protein-Lipid Interactions in the Functioning of Bitopic Membrane Proteins
    Bocharov, Eduard V.
    Lesovoy, Dmitry M.
    Bocharova, Olga V.
    Urban, Anatoly S.
    Bershacky, Yaroslav V.
    Volynsky, Pavel E.
    Efremov, Roman G.
    Arseniev, Alexander S.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 211A - 211A
  • [24] PROTEIN-LIPID INTERACTIONS AND MAINTENANCE OF RED CELL MEMBRANE INTEGRITY
    MOLDOW, CF
    HOSPELHO.V
    ZUCKERFR.D
    SILBER, R
    JOURNAL OF CLINICAL INVESTIGATION, 1970, 49 (06): : A67 - &
  • [25] CALORIMETRY OF PROTEIN-LIPID INTERACTIONS
    RUTERJANS, H
    STANISLAWSKI, B
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1984, 365 (03): : 264 - 264
  • [26] Elucidation of protein-lipid interactions
    Howell, NK
    GUMS AND STABILISERS FOR THE FOOD INDUSTRY 11, 2002, (278): : 73 - 81
  • [27] Protein-Lipid Interactions on the HIV Membrane Defined by EPR Spectroscopy
    Song, Likai
    Hayati, Zahra
    Liu, Mengtian
    Kim, Mikyung
    Reinherz, Ellis
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 198A - 198A
  • [28] Electron spin resonance in membrane research: Protein-lipid interactions
    Marsh, Derek
    METHODS, 2008, 46 (02) : 83 - 96
  • [29] THERMODYNAMICS OF PROTEIN-LIPID INTERACTIONS
    FREIRE, E
    BILTONEN, RL
    BIOPHYSICAL JOURNAL, 1979, 25 (02) : A284 - A284
  • [30] PERSPECTIVES ON PROTEIN-LIPID INTERACTIONS
    LEWIS, BA
    BIOPHYSICAL JOURNAL, 1988, 53 (02) : A243 - A243