Mitochondria in pluripotent stem cells: sternness regulators and disease targets

被引:39
作者
Folmes, Clifford D. L. [1 ,2 ]
Ma, Hong [3 ,4 ]
Mitalipov, Shoukhrat [3 ,4 ]
Terzic, Andre [1 ,2 ]
机构
[1] Mayo Clin, Ctr Regenerat Med, Rochester, MN 55905 USA
[2] Mayo Clin, Div Cardiovasc Dis, Rochester, MN 55905 USA
[3] Oregon Hlth & Sci Univ, Ctr Embryon Cell & Gene Therapy, Portland, OR 97239 USA
[4] Oregon Hlth & Sci Univ, Div Reprod & Dev Sci, Oregon Natl Primate Res Ctr, Beaverton, OR 97006 USA
基金
美国国家卫生研究院;
关键词
NUCLEAR TRANSFER; SELECTIVE ELIMINATION; HISTONE ACETYLATION; SOMATIC-CELLS; DIFFERENTIATION; METABOLISM; MUTATIONS; GLYCOLYSIS; METHYLATION; MECHANISMS;
D O I
10.1016/j.gde.2016.02.001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Beyond their canonical role in efficient ATP production through oxidative metabolism, mitochondria are increasingly recognized as critical in defining stem cell function and fate. Implicating a fundamental interplay within the epigenetics of eukaryotic cell systems, the integrity of mitochondria is found vital across the developmental/differentiation spectrum from securing pluripotency maintenance to informing organotypic decisions. This overview will discuss recent progress on examining the plasticity of mitochondria in enabling the execution of programming and reprogramming regimens, as well as the application of nuclear reprogramming and somatic cell nuclear transfer as rescue techniques to generate genetically and functionally corrected pluripotent stem cells from patients with mitochondrial DNA-based disease.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 51 条
[1]   Targeted killing of a mammalian cell based upon its specialized metabolic state [J].
Alexander, Peter B. ;
Wang, Jian ;
McKnight, Steven L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (38) :15828-15833
[2]  
Alexeyev MF, 2008, GENE THER, V15, P516, DOI 10.1038/sj.gt.2008.11
[3]   Human Induced Pluripotent Stem Cell Lines Show Stress Defense Mechanisms and Mitochondrial Regulation Similar to Those of Human Embryonic Stem Cells [J].
Armstrong, Lyle ;
Tilgner, Katarzyna ;
Saretzki, Gabriele ;
Atkinson, Stuart P. ;
Stojkovic, Miodrag ;
Moreno, Ruben ;
Przyborski, Stefan ;
Lako, Majlinda .
STEM CELLS, 2010, 28 (04) :661-673
[4]   Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs [J].
Bacman, Sandra R. ;
Williams, Sion L. ;
Pinto, Milena ;
Peralta, Susana ;
Moraes, Carlos T. .
NATURE MEDICINE, 2013, 19 (09) :1111-1113
[5]   Carbon metabolism-mediated myogenic differentiation [J].
Bracha, Abigail L. ;
Ramanathan, Arvind ;
Huang, Sui ;
Ingber, Donald E. ;
Schreiber, Stuart L. .
NATURE CHEMICAL BIOLOGY, 2010, 6 (03) :202-204
[6]   The role of mitochondria in aging [J].
Bratic, Ana ;
Larsson, Nils-Goran .
JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (03) :951-957
[7]   Sheep cloned by nuclear transfer from a cultured cell line [J].
Campbell, KHS ;
McWhir, J ;
Ritchie, WA ;
Wilmut, I .
NATURE, 1996, 380 (6569) :64-66
[8]   Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells [J].
Carey, Bryce W. ;
Finley, Lydia W. S. ;
Cross, Justin R. ;
Allis, C. David ;
Thompson, Craig B. .
NATURE, 2015, 518 (7539) :413-416
[9]   Mitochondrial Diseases of the Brain [J].
Chaturvedi, Rajnish K. ;
Beal, M. Flint .
FREE RADICAL BIOLOGY AND MEDICINE, 2013, 63 :1-29
[10]   The Challenges of Mitochondrial Replacement [J].
Chinnery, Patrick F. ;
Craven, Lyndsey ;
Mitalipov, Shoukhrat ;
Stewart, James B. ;
Herbert, Mary ;
Turnbull, Douglass M. .
PLOS GENETICS, 2014, 10 (04)