A HARNACK INEQUALITY FOR FRACTIONAL LAPLACE EQUATIONS WITH LOWER ORDER TERMS

被引:74
作者
Tan, Jinggang [1 ]
Xiong, Jingang [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Fractional Laplace equations; Harnack inequality; Moser's iteration;
D O I
10.3934/dcds.2011.31.975
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a Harnack inequality of fractional Laplace equations without imposing sign condition on the coefficient of zero order term via the Moser's iteration and John-Nirenberg inequality.
引用
收藏
页码:975 / 983
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 1997, Courant Lecture Notes
[2]   Harnack inequalities for jump processes [J].
Bass, RF ;
Levin, DA .
POTENTIAL ANALYSIS, 2002, 17 (04) :375-388
[3]  
CABRE X, ARXIV10120867V1
[4]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[5]   Estimates on Green functions and Poisson kernels for symmetric stable processes [J].
Chen, ZQ ;
Song, RM .
MATHEMATISCHE ANNALEN, 1998, 312 (03) :465-501
[6]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[7]   The Yamabe problem on manifolds with boundary: Existence and compactness results [J].
Han, ZC ;
Li, YY .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (03) :489-542
[8]   ON FUNCTIONS OF BOUNDED MEAN OSCILLATION [J].
JOHN, F ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1961, 14 (03) :415-&
[9]  
Kassmann M., CLASSICAL HARNACK IN
[10]   WEIGHTED NORM INEQUALITIES FOR FRACTIONAL INTEGRALS [J].
MUCKENHOUPT, B ;
WHEEDEN, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 192 :261-274