A COMPARISON PRINCIPLE FOR HAMILTON-JACOBI EQUATIONS WITH DISCONTINUOUS HAMILTONIANS

被引:13
作者
Giga, Yoshikazu [1 ]
Gorka, Przemyslaw [2 ,3 ]
Rybka, Piotr [4 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
[2] Univ Talca, Inst Matemat & Fis, Talca, Chile
[3] Warsaw Univ Technol, Dept Math & Informat Sci, PL-00661 Warsaw, Poland
[4] Warsaw Univ, Inst Appl Math & Mech, PL-07097 Warsaw, Poland
基金
日本学术振兴会;
关键词
Hamilton-Jacobi equation; viscosity solutions; discontinuous Hamiltonian; VISCOSITY SOLUTIONS;
D O I
10.1090/S0002-9939-2010-10630-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show a comparison principle for viscosity super- and subsolutions to Hamilton-Jacobi equations with discontinuous Hamiltonians. The key point is that the Hamiltonian depends upon u and has a special structure. The supersolution must enjoy some additional regularity.
引用
收藏
页码:1777 / 1785
页数:9
相关论文
共 11 条
[1]  
BARLES G, 1987, ESAIM-MATH MODEL NUM, V21, P557
[2]   Time-dependent measurable Hamilton-Jacobi equations [J].
Camilli, F ;
Siconolfi, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (4-6) :813-847
[3]  
Chen XF, 2008, INTERFACE FREE BOUND, V10, P339
[4]   Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients [J].
Coclite, Giuseppe Maria ;
Risebro, Nils Henrik .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2007, 4 (04) :771-795
[5]  
Deckelnick K, 2004, INTERFACE FREE BOUND, V6, P329
[6]  
DEZAN C, CAUCHY PROBLEMS NONC
[7]  
GIGA Y., 2006, MONOGRAPHS MATH, V99
[8]   NONLOCAL SPATIALLY INHOMOGENEOUS HAMILTON-JACOBI EQUATION WITH UNUSUAL FREE BOUNDARY [J].
Giga, Yoshikazu ;
Gorka, Przemyslaw ;
Rybka, Piotr .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (02) :493-519
[9]  
Ishii H., 1985, Bull. Fac. Sci. Engrg. Chuo Univ, V28, P33
[10]   On viscosity solutions of irregular Hamilton-Jacobi equations [J].
Strömberg, T .
ARCHIV DER MATHEMATIK, 2003, 81 (06) :678-688