The global well-posedness of the modified quasi-geostrophic equation in frequency spaces

被引:2
作者
Ru, Shaolei [1 ]
Chen, Jiecheng [2 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310003, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua, Peoples R China
关键词
Modified quasi-geostrophic equations; Global well-posedness;
D O I
10.1016/j.aml.2014.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the solution, theta(x, t), of the modified quasi-geostrophic equations exists globally (i.e., theta(x, t) is an element of L infinity(R+; FL1r,0 boolean AND L-1(R+; FL1r,alpha)), if the initial data parallel to theta(0)(x)parallel to(FL1r,0) < k/2(r+alpha+3). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
[31]   GLOBAL WELL-POSEDNESS FOR THE CUBIC FRACTIONAL SCHRODINGER EQUATION [J].
Gao, Xinjun .
COLLOQUIUM MATHEMATICUM, 2018, 153 (01) :81-96
[32]   Global well-posedness for the Benjamin equation in low regularity [J].
Li, Yongsheng ;
Wu, Yifei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) :1610-1625
[33]   Global Well-Posedness and Scattering for Derivative Schrodinger Equation [J].
Wang, Yuzhao .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (10) :1694-1722
[34]   Global Well-Posedness for the Fractional Nonlinear Schrodinger Equation [J].
Guo, Boling ;
Huo, Zhaohui .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (02) :247-255
[35]   GLOBAL WELL-POSEDNESS ON THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION [J].
Wu, Yifei .
ANALYSIS & PDE, 2015, 8 (05) :1101-1112
[36]   Global well-posedness for the derivative nonlinear Schrodinger equation [J].
Bahouri, Hajer ;
Perelman, Galina .
INVENTIONES MATHEMATICAE, 2022, 229 (02) :639-688
[37]   Long time behavior for the critical modified surface quasi-geostrophic equation [J].
Wu, Huan ;
Liu, Yang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 72
[38]   Well-Posedness for the Generalized Zakharov–Kuznetsov Equation on Modulation Spaces [J].
Tomoya Kato .
Journal of Fourier Analysis and Applications, 2017, 23 :612-655
[39]   Sharp ill-posedness and global well-posedness for the b-equation [J].
Guo, Yingying ;
Ye, Weikui ;
Yin, Zhaoyang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 434
[40]   Global well-posedness of inviscid lake equations in the Besov spaces [J].
Li, Yatao ;
Liu, Jitao ;
Wu, Yanxia .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) :9545-9559