Poly(vinyl alcohol) microspheres with pH- and thermosensitive properties as temperature-controlled drug delivery

被引:46
|
作者
Fundueanu, Gheorghe [1 ,2 ]
Constantin, Marieta [1 ]
Ascenzi, Paolo [3 ,4 ]
机构
[1] Petru Poni Inst Macromol Chem, Dept Bioact & Biocompatible Polymers, Iasi 700487, Romania
[2] Univ Ferrara, Dept Pharmaceut Sci, I-44100 Ferrara, Italy
[3] Univ Roma Tre, Dept Biol, I-00146 Rome, Italy
[4] Univ Roma Tre, Interdept Lab Electron Microscopy, I-00146 Rome, Italy
关键词
Intelligent microspheres; pH- and temperature-sensitive co-polymers; Poly(vinyl alcohol); Lower critical solution temperature; Drug delivery; N-ISOPROPYLACRYLAMIDE; SENSITIVE HYDROGELS; SEMI-IPNS; POLY(N-ISOPROPYLACRYLAMIDE); RELEASE; COPOLYMERS; SURFACTANT; PULLULAN; POLYMERS; BEHAVIOR;
D O I
10.1016/j.actbio.2010.04.026
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
One of the most important inconveniences of the pH- and temperature-sensitive hydrogels is the loss of thermosensitivity when relatively large amounts of a pH-sensitive monomer are co-polymerized with N-isopropylacrylamide (NIPAAm) In order to overcome this drawback, we propose here a method to prepare thermosensitive poly(vinyl alcohol) (PVA) microspheres with a higher content of carboxylic groups that preserve thermosensitive properties Moreover, PVA possesses excellent mechanical properties, biocompatibility and non-toxicity. PVA microspheres were obtained by suspension cross-linking of an acidified aqueous solution of the polymer with glutaraldehyde Poly(N-Isopropylacrylamide-co-N-hydroxymethyl acrylamide) (poly(NIPAAm-co-HMAAm)), designed to have a lower critical solution temperature (LCST) corresponding to that of the human body, was grafted onto PVA microspheres in order to confer them with thermosensitivity. Then, the pH-sensitive functional groups (-COOH) were introduced by reaction between the un-grafted -OH groups of PVA and succinic anhydride The pH- and temperature-sensitive PVA microspheres display a sharp volume transition under physiological conditions around the LCST of the linear polymer The microspheres possess good drug-loading capacity without losing their thermosensitive properties Under simulated physiological conditions, the release of drugs is controlled by temperature. (C) 2010 Acta Materialia Inc Published by Elsevier Ltd All rights reserved
引用
收藏
页码:3899 / 3907
页数:9
相关论文
共 50 条
  • [21] Properties of chitosan/poly(vinyl alcohol) films for drug-controlled release
    Wang, Q
    Du, YM
    Fan, LH
    JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 96 (03) : 808 - 813
  • [22] Swelling Characteristics of pH- and Thermo-Sensitive Crosslinked Poly(Vinyl Alcohol) Grafts
    Ayman M. Atta
    Nermine E. Maysour
    K. F. Arndt
    Journal of Polymer Research, 2006, 13 : 53 - 63
  • [23] PH-CONTROLLED SILICONE MICROSPHERES FOR CONTROLLED DRUG-DELIVERY
    SUTINEN, R
    LAASANEN, V
    PARONEN, P
    URTTI, A
    JOURNAL OF CONTROLLED RELEASE, 1995, 33 (01) : 163 - 171
  • [24] Swelling characteristics of pH- and thermo-sensitive crosslinked poly(vinyl alcohol) grafts
    Atta, AM
    Maysour, NE
    Arndt, KF
    JOURNAL OF POLYMER RESEARCH, 2006, 13 (01) : 53 - 63
  • [25] Cellulose acetate butyrate-pH/thermosensitive polymer microcapsules containing aminated poly(vinyl alcohol) microspheres for oral administration of DNA
    Fundueanu, Gheorghe
    Constantin, Marieta
    Bortolotti, Fabrizio
    Cortesi, Rita
    Ascenzi, Paolo
    Menegatti, Enea
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2007, 66 (01) : 11 - 20
  • [26] Electrospinning of stimuli-responsive polymers for controlled drug delivery: pH- and temperature-driven release
    Williams, Leah
    Hatton, Fiona L.
    Willcock, Helen
    Mele, Elisa
    BIOTECHNOLOGY AND BIOENGINEERING, 2022, 119 (05) : 1177 - 1188
  • [27] A lignocellulose nanofibril-poly(vinyl alcohol) hydrogel with controlled drug delivery for wound healing
    Cheng, Gege
    Wang, Shuangju
    Li, Wenwen
    Jiang, Yan
    Liu, Xiuyu
    Huang, Qin
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 220
  • [28] pH-Sensitive Nanocomposite Hydrogels Based on Carboxymethyl Chitosan/Poly(vinyl alcohol)/ZnO Nanoparticle with Drug Delivery Properties
    Gholamali, Iman
    Asnaashariisfahani, Manzarbanou
    Alipour, Eskandar
    POLYMER SCIENCE SERIES A, 2020, 62 (05) : 502 - 514
  • [29] pH-Sensitive Nanocomposite Hydrogels Based on Carboxymethyl Chitosan/Poly(vinyl alcohol)/ZnO Nanoparticle with Drug Delivery Properties
    Manzarbanou Iman Gholamali
    Eskandar Asnaashariisfahani
    Polymer Science, Series A, 2020, 62 : 502 - 514
  • [30] Silicone microspheres for pH-controlled gastrointestinal drug delivery
    Carelli, V
    Coltelli, S
    Di Colo, G
    Nannipieri, E
    Serafini, MF
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1999, 179 (01) : 73 - 83