Simultaneous High-Strength and Deformable Nanolaminates With Thick Biphase Interfaces

被引:33
作者
Cheng, Justin Y. [1 ]
Xu, Shuozhi [2 ]
Chen, Youxing [3 ]
Li, Zezhou [1 ]
Baldwin, Jon K. [4 ]
Beyerlein, Irene J. [2 ,5 ]
Mara, Nathan A. [1 ]
机构
[1] Univ Minnesota Twin Cities, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
[2] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[3] Univ N Carolina, Mech Engn & Engn Sci, Charlotte, NC 28223 USA
[4] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[5] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
nanomaterials; strength; dislocations; toughness; interfaces; composite; TENSILE DUCTILITY; MECHANISMS; SIZE; MULTILAYERS; BEHAVIOR;
D O I
10.1021/acs.nanolett.1c04144
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-phase nanolaminates are known for their high strength, yet they suffer from loss of ductility. Here, we show that broadening heterophase interfaces into "3D interfaces" as thick as the individual layers breaks this strength-ductility trade-off. In this work, we use micropillar compression and transmission electron microscopy to examine the processes underlying this breakthrough mechanical performance. The analysis shows that the 3D interfaces stifle flow instability via shear band formation through their interaction with dislocation pileups. To explain this observation, we use phase field dislocation dynamics (PFDD) simulations to study the interaction between a pileup and a 3D interface. Results show that when dislocation pileups fall below a characteristic size relative to the 3D interface thickness, transmission across interfaces becomes significantly frustrated. Our work demonstrates that 3D interfaces attenuate pileup-induced stress concentrations, preventing shear localization and offering an alternative way to enhanced mechanical performance.
引用
收藏
页码:1897 / 1904
页数:8
相关论文
共 34 条
[1]   Dislocation-based deformation mechanisms in metallic nanolaminates [J].
Anderson, PM ;
Foecke, T ;
Hazzledine, PM .
MRS BULLETIN, 1999, 24 (02) :27-33
[2]   d Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics [J].
Beyerlein, I. J. ;
Hunter, A. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2066)
[3]   Defect-interface interactions [J].
Beyerlein, I. J. ;
Demkowicz, M. J. ;
Misra, A. ;
Uberuaga, B. P. .
PROGRESS IN MATERIALS SCIENCE, 2015, 74 :125-210
[4]   Structure-Property-Functionality of Bimetal Interfaces [J].
Beyerlein, I. J. ;
Mara, N. A. ;
Wang, J. ;
Carpenter, J. S. ;
Zheng, S. J. ;
Han, W. Z. ;
Zhang, R. F. ;
Kang, K. ;
Nizolek, T. ;
Pollock, T. M. .
JOM, 2012, 64 (10) :1192-1207
[5]   Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation [J].
Beyerlein, Irene J. ;
Mara, Nathan A. ;
Carpenter, John S. ;
Nizolek, Thomas ;
Mook, William M. ;
Wynn, Thomas A. ;
McCabe, Rodney J. ;
Mayeur, Jason R. ;
Kang, Keonwook ;
Zheng, Shijian ;
Wang, Jian ;
Pollock, Tresa M. .
JOURNAL OF MATERIALS RESEARCH, 2013, 28 (13) :1799-1812
[6]   The Strongest Size in Gradient Nanograined Metals [J].
Cao, Penghui .
NANO LETTERS, 2020, 20 (02) :1440-1446
[7]   Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers [J].
Chen, Y. ;
Li, N. ;
Hoagland, R. G. ;
Liu, X-Y ;
Baldwin, J. K. ;
Beyerlein, I. J. ;
Cheng, J. Y. ;
Mara, N. A. .
ACTA MATERIALIA, 2020, 199 :593-601
[8]   Structure, shear resistance and interaction with point defects of interfaces in Cu-Nb nanocomposites synthesized by severe plastic deformation [J].
Demkowicz, M. J. ;
Thilly, L. .
ACTA MATERIALIA, 2011, 59 (20) :7744-7756
[9]   Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers [J].
Fan, Z. ;
Xue, S. ;
Wang, J. ;
Yu, K. Y. ;
Wang, H. ;
Zhang, X. .
ACTA MATERIALIA, 2016, 120 :327-336
[10]   The influence of focused-ion beam preparation technique on microcompression investigations: Lathe vs. annular milling [J].
Huetsch, Julia ;
Lilleodden, Erica T. .
SCRIPTA MATERIALIA, 2014, 77 :49-51