On p-adic valuations of certain m colored p-ary partition functions

被引:2
作者
Ulas, Maciej [1 ]
Zmija, Blazej [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Partitions into powers of p; Power series; p-Adic valuation; Congruences; SERIES;
D O I
10.1007/s11139-020-00256-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k is an element of N->= 2 and for given m is an element of Z\{0} consider the sequence (S-k,S-m(n))(n is an element of N) defined by the power series expansion 1/(1-x)(m) (infinity)(i=0 Pi)1/(1-x(ki))(m(k-1)) = (n=0)Sigma(infinity)Sk(,m)(n)x(n). The number S-k,S-m(n) for m is an element of N+ has a natural combinatorial interpretation: it counts the number of representations ofnas sums of powers of k, where the part equal to 1 takes one among mk colors and each part>1 takes m (k-1) colors. We concentrate on the case when k=p is a prime. Our main result is the computation of the exact value of the p-adic valuation of S-p,S-m(n). In particular, in each case the set of values of nu(p)(S-p,S-m(n)) is finite and the maximum value is bounded by max{nu(p)(m)+1,nu(p)(m+1)+1}. Our results can be seen as a generalization of earlier work of Churchhouse and recent work of Gawron, Miska and Ulas, and the present authors.
引用
收藏
页码:623 / 660
页数:38
相关论文
共 12 条
[1]  
Allouche J., 2003, AUTOMATIC SEQUENCES, DOI DOI 10.1017/CBO9780511546563
[2]  
Allouche J-P, 1999, Discrete Mathematics and Theoretical Computer Science, P1, DOI [DOI 10.1007/978-1-4471-0551-0_1, DOI 10.1007/978-1-4471-0551-01]
[3]  
CHRISTOL G, 1980, B SOC MATH FR, V108, P401
[4]   CONGRUENCE PROPERTIES OF BINARY PARTITION FUNCTION [J].
CHURCHHO.RF .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 :371-&
[5]   Local symmetries in the period-doubling sequence [J].
Damanik, D .
DISCRETE APPLIED MATHEMATICS, 2000, 100 (1-2) :115-121
[6]   Trigonometric series and Taylor series [J].
Fatou, P .
ACTA MATHEMATICA, 1906, 30 (04) :335-400
[7]  
Gawron M, 2018, MONATSH MATH, V185, P307, DOI 10.1007/s00605-017-1041-2
[8]  
GUPTA H, 1971, PROC CAMB PHILOS S-M, V70, P53
[9]  
Nishioka K., 1996, LECT NOTES MATH, V1631
[10]  
RODSETH O, 1970, PROC CAMB PHILOS S-M, V68, P447