Evaluating a Deep Learning Diabetic Retinopathy Grading System Developed on Mydriatic Retinal Images When Applied to Non-Mydriatic Community Screening

被引:15
作者
Nunez do Rio, Joan M. [1 ,2 ]
Nderitu, Paul [1 ,2 ]
Bergeles, Christos [3 ]
Sivaprasad, Sobha [1 ,4 ]
Tan, Gavin S. W. [5 ,6 ]
Raman, Rajiv [7 ]
机构
[1] UCL, Inst Ophthalmol, London EC1V 9EL, England
[2] Kings Coll London, Sect Ophthalmol, London WC2R 2LS, England
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, London SE1 7EU, England
[4] Moorfields Eye Hosp, NIHR Moorfields Biomed Res Ctr, London EC1V 2PD, England
[5] Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore 169856, Singapore
[6] Natl Univ Singapore, Duke NUS Med Sch, Singapore 169857, Singapore
[7] Sankara Nethralaya, 18 Coll Rd, Chennai 600006, Tamil Nadu, India
基金
英国科研创新办公室;
关键词
diabetic retinopathy; handheld non-mydriatic images; deep learning; FUNDUS PHOTOGRAPHY; COST-EFFECTIVENESS; VALIDATION; FIELD;
D O I
10.3390/jcm11030614
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial Intelligence has showcased clear capabilities to automatically grade diabetic retinopathy (DR) on mydriatic retinal images captured by clinical experts on fixed table-top retinal cameras within hospital settings. However, in many low- and middle-income countries, screening for DR revolves around minimally trained field workers using handheld non-mydriatic cameras in community settings. This prospective study evaluated the diagnostic accuracy of a deep learning algorithm developed using mydriatic retinal images by the Singapore Eye Research Institute, commercially available as Zeiss VISUHEALTH-AI DR, on images captured by field workers on a Zeiss Visuscout(R) 100 non-mydriatic handheld camera from people with diabetes in a house-to-house cross-sectional study across 20 regions in India. A total of 20,489 patient eyes from 11,199 patients were used to evaluate algorithm performance in identifying referable DR, non-referable DR, and gradability. For each category, the algorithm achieved precision values of 29.60 (95% CI 27.40, 31.88), 92.56 (92.13, 92.97), and 58.58 (56.97, 60.19), recall values of 62.69 (59.17, 66.12), 85.65 (85.11, 86.18), and 65.06 (63.40, 66.69), and F-score values of 40.22 (38.25, 42.21), 88.97 (88.62, 89.31), and 61.65 (60.50, 62.80), respectively. Model performance reached 91.22 (90.79, 91.64) sensitivity and 65.06 (63.40, 66.69) specificity at detecting gradability and 72.08 (70.68, 73.46) sensitivity and 85.65 (85.11, 86.18) specificity for the detection of all referable eyes. Algorithm accuracy is dependent on the quality of acquired retinal images, and this is a major limiting step for its global implementation in community non-mydriatic DR screening using handheld cameras. This study highlights the need to develop and train deep learning-based screening tools in such conditions before implementation.
引用
收藏
页数:11
相关论文
共 32 条
[1]   Diabetic retinopathy management guidelines [J].
Chakrabarti, Rahul ;
Harper, C. Alex ;
Keeffe, Jill Elizabeth .
EXPERT REVIEW OF OPHTHALMOLOGY, 2012, 7 (05) :417-439
[2]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[3]   FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE [J].
Decenciere, Etienne ;
Zhang, Xiwei ;
Cazuguel, Guy ;
Lay, Bruno ;
Cochener, Beatrice ;
Trone, Caroline ;
Gain, Philippe ;
Ordonez-Varela, John-Richard ;
Massin, Pascale ;
Erginay, Ali ;
Charton, Beatrice ;
Klein, Jean-Claude .
IMAGE ANALYSIS & STEREOLOGY, 2014, 33 (03) :231-234
[4]   Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study [J].
Faes, Livia ;
Wagner, Siegfried K. ;
Fu, Dun Jack ;
Liu, Xiaoxuan ;
Korot, Edward ;
Ledsam, Joseph R. ;
Back, Trevor ;
Chopra, Reena ;
Pontikos, Nikolas ;
Kern, Christoph ;
Moraes, Gabriella ;
Schmid, Martin K. ;
Sim, Dawn ;
Balaskas, Konstantinos ;
Bachmann, Lucas M. ;
Denniston, Alastair K. ;
Keane, Pearse A. .
LANCET DIGITAL HEALTH, 2019, 1 (05) :E232-E242
[5]   Advances in Retinal Imaging and Applications in Diabetic Retinopathy Screening: A Review [J].
Fenner, Beau J. ;
Wong, Raymond L. M. ;
Lam, Wai-Ching ;
Tan, Gavin S. W. ;
Cheung, Gemmy C. M. .
OPHTHALMOLOGY AND THERAPY, 2018, 7 (02) :333-346
[6]   Automated Identification of Diabetic Retinopathy Using Deep Learning [J].
Gargeya, Rishab ;
Leng, Theodore .
OPHTHALMOLOGY, 2017, 124 (07) :962-969
[7]   NOVEL METHOD FOR ANALYZING SNELLEN VISUAL ACUITY MEASUREMENTS [J].
Gregori, Ninel Z. ;
Feuer, William ;
Rosenfeld, Philip J. .
RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2010, 30 (07) :1046-1050
[8]   Performance of a Deep-Learning Algorithm vs Manual Grading for Detecting Diabetic Retinopathy in India [J].
Gulshan, Varun ;
Rajan, Renu P. ;
Widner, Kasumi ;
Wu, Derek ;
Wubbels, Peter ;
Rhodes, Tyler ;
Whitehouse, Kira ;
Coram, Marc ;
Corrado, Greg ;
Ramasamy, Kim ;
Raman, Rajiv ;
Peng, Lily ;
Webster, Dale R. .
JAMA OPHTHALMOLOGY, 2019, 137 (09) :987-993
[9]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[10]  
Haneda Shion, 2010, Nihon Rinsho, V68 Suppl 9, P228