Noisy intermediate-scale quantum algorithms

被引:767
作者
Bharti, Kishor [1 ,14 ,15 ]
Cervera-Lierta, Alba [2 ,3 ]
Kyaw, Thi Ha [2 ,3 ]
Haug, Tobias [4 ]
Alperin-Lea, Sumner [3 ]
Anand, Abhinav [3 ]
Degroote, Matthias [2 ,3 ,16 ]
Heimonen, Hermanni [1 ]
Kottmann, Jakob S. [2 ,3 ]
Menke, Tim [5 ,6 ,7 ]
Mok, Wai-Keong [1 ]
Sim, Sukin [8 ]
Kwek, Leong-Chuan [1 ,9 ,10 ,11 ]
Aspuru-Guzik, Alan [2 ,3 ,12 ,13 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[2] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 2E4, Canada
[3] Univ Toronto, Dept Chem, Chem Phys Theory Grp, Toronto, ON M5G 1Z8, Canada
[4] Imperial Coll London, Blackett Lab, QOLS, London SW7 2AZ, England
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[6] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] MIT, Dept Phys, Cambridge, MA 02139 USA
[8] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[9] CNRS UNS NUS NTU Int Joint Res Unit UMI 3654, MajuLab, Singapore, Singapore
[10] Nanyang Technol Univ, Natl Inst Educ, Singapore 637616, Singapore
[11] Nanyang Technol Univ, Inst Adv Studies, Singapore 637616, Singapore
[12] Vector Inst Artificial Intelligence, Toronto, ON M5S 1M1, Canada
[13] Canadian Inst Forthat Adv Res, Toronto, ON M5G 1Z8, Canada
[14] Univ Maryland, NIST, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[15] Univ Maryland, NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[16] Boehringer Ingelheim GmbH & Co KG, Quantum Lab, D-55218 Ingelheim, Germany
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
MATRIX PRODUCT STATES; ERROR-CORRECTION; COUPLED-CLUSTER; APPROXIMATE OPTIMIZATION; PROGRAMMING-LANGUAGES; DISCRETE LOGARITHMS; ANNEALING APPROACH; MAX-CUT; COMPUTATION; MACHINE;
D O I
10.1103/RevModPhys.94.015004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A universal fault-tolerant quantum computer that can efficiently solve problems such as integer factorization and unstructured database search requires millions of qubits with low error rates and long coherence times. While the experimental advancement toward realizing such devices will potentially take decades of research, noisy intermediate-scale quantum (NISQ) computers already exist. These computers are composed of hundreds of noisy qubits, i.e., qubits that are not error corrected, and therefore perform imperfect operations within a limited coherence time. In the search for achieving quantum advantage with these devices, algorithms have been proposed for applications in various disciplines spanning physics, machine learning, quantum chemistry, and combinatorial optimization. The overarching goal of such algorithms is to leverage the limited available resources to perform classically challenging tasks. In this review, a thorough summary of NISQ computational paradigms and algorithms is provided. The key structure of these algorithms and their limitations and advantages are discussed. A comprehensive overview of various benchmarking and software tools useful for programming and testing NISQ devices is additionally provided.
引用
收藏
页数:69
相关论文
共 815 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]  
Aaronson S., 2019, ARXIV191012085
[3]   SHADOW TOMOGRAPHY OF QUANTUM STATES [J].
Aaronson, Scott .
SIAM JOURNAL ON COMPUTING, 2020, 49 (05)
[4]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[5]  
Abadi Martin, 2016, arXiv
[6]  
Abbas A., NAT COMPUT SCI, V1, P403
[7]   The quantum technologies roadmap: a European community view [J].
Acin, Antonio ;
Bloch, Immanuel ;
Buhrman, Harry ;
Calarco, Tommaso ;
Eichler, Christopher ;
Eisert, Jens ;
Esteve, Daniel ;
Gisin, Nicolas ;
Glaser, Steffen J. ;
Jelezko, Fedor ;
Kuhr, Stefan ;
Lewenstein, Maciej ;
Riedel, Max F. ;
Schmidt, Piet O. ;
Thew, Rob ;
Wallraff, Andreas ;
Walmsley, Ian ;
Wilhelm, Frank K. .
NEW JOURNAL OF PHYSICS, 2018, 20
[8]  
ACKLEY DH, 1985, COGNITIVE SCI, V9, P147
[9]   Rydberg atom quantum technologies [J].
Adams, C. S. ;
Pritchard, J. D. ;
Shaffer, J. P. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (01)
[10]   FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE [J].
Aharonov, Dorit ;
Ben-Or, Michael .
SIAM JOURNAL ON COMPUTING, 2008, 38 (04) :1207-1282