The AIRES-CH Project: Artificial Intelligence for Digital REStoration of Cultural Heritages Using Nuclear Imaging and Multidimensional Adversarial Neural Networks

被引:10
作者
Bombini, Alessandro [1 ]
Anderlini, Lucio [1 ]
Dell'Agnello, Luca [2 ]
Giaocmini, Francesco [2 ]
Ruberto, Chiara [1 ]
Taccetti, Francesco [1 ]
机构
[1] Ist Nazl Fis Nucl, Florence Sect, Via Bruno Rossi 1, I-50019 Sesto Fiorentino, FI, Italy
[2] INFN CNAF, Viale Carlo Berti Pichat 6, I-40127 Bologna, BO, Italy
来源
IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT I | 2022年 / 13231卷
关键词
Image processing for cultural heritage; Deep learning; X-ray fluorescence imaging; Web technologies;
D O I
10.1007/978-3-031-06427-2_57
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial Intelligence for digital REStoration of Cultural Heritage (AIRES-CH) aims at building a web-based app for the digital restoration of pictorial artworks through Computer Vision technologies applied to physical imaging raw data. Physical imaging techniques, such as XRF, PIXE, PIGE, and FTIR, are capable of exploring a wide range of wavelengths providing spectra that are used to infer the chemical composition of the pigments. A multidimensional neural network, specifically designed to automatically restore damaged or hidden pictorial work, will be deployed on the INFN-CHNet Cloud as a web service, freely available to authenticated researchers. In this contribution, we report the status of the project, its current results, the development plans as well as future prospects.
引用
收藏
页码:685 / 700
页数:16
相关论文
共 36 条
[1]  
Ahmetovic M, 2020, THESIS U FLORENCE
[2]   "Ecce Homo" by Antonello da Messina, from non-invasive investigations to data fusion and dissemination [J].
Albertin, Fauzia ;
Ruberto, Chiara ;
Cucci, Costanza ;
Callieri, Marco ;
Potenziani, Marco ;
Siotto, Eliana ;
Pingi, Paolo ;
Scopigno, Roberto ;
Bettuzzi, Matteo ;
Brancaccio, Rosa ;
Morigi, Maria Pia ;
Castelli, Lisa ;
Taccetti, Francesco ;
Picollo, Marcello ;
Stefani, Lorenzo ;
de Vita, Francesca .
SCIENTIFIC REPORTS, 2021, 11 (01)
[3]  
Alfeld Matthias, 2020, Microscopy and Microanalysis, V26, P72, DOI 10.1017/S1431927620013288
[4]  
[Anonymous], 2013, International Scholarly Research Notices, DOI [DOI 10.1155/2013/905685, 10.1155/2013/905685]
[5]  
[Anonymous], 2016, ICLR
[6]  
[Anonymous], 2016, Fractalnet: Ultra-deep neural networks without residuals
[7]  
[Anonymous], 2015, 3 INT C LEARN REPR I
[8]  
Bochicchio L, 2020, SCIENCE AND ART, P139
[9]  
Bombini A., 2021, CONFERENZA GARR 2021, DOI [10.26314/GARRConf21-proceedings-09, DOI 10.26314/GARRCONF21-PROCEEDINGS-09]
[10]   Machine Learning for Cultural Heritage: A Survey [J].
Fiorucci, Marco ;
Khoroshiltseva, Marina ;
Pontil, Massimiliano ;
Traviglia, Arianna ;
Del Bue, Alessio ;
James, Stuart .
PATTERN RECOGNITION LETTERS, 2020, 133 :102-108