Self-assembled Cu-Ni bimetal oxide 3D in-plane epitaxial structures for highly efficient oxygen evolution reaction

被引:65
作者
Li, Chaojiang [1 ,2 ]
Zhang, Bowei [1 ]
Li, Yong [2 ]
Hao, Shiji [1 ]
Cao, Xun [1 ]
Yang, Guang [1 ]
Wu, Junsheng [4 ]
Huang, Yizhong [1 ,3 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Tsinghua Univ, Beijing Key Lab Precis Ultraprecis Mfg Equipment, Dept Mech Engn, Beijing 100084, Peoples R China
[3] Hubei Univ Technol, Coll Sci, Wuhan 430068, Hubei, Peoples R China
[4] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing 100083, Peoples R China
关键词
Electrochemistry; Oxygen evolution reaction; Liquid plasma discharge; 3D porous electrode; NICKEL-HYDROXIDE; WATER OXIDATION; ELECTROCATALYST; COPPER; FOAM; ELECTRODEPOSITION; NANOPARTICLES; NANOSHEETS; NANOWIRES; ROBUST;
D O I
10.1016/j.apcatb.2018.11.046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To improve the catalytic activity of copper based electrode for oxygen evolution reaction (OER), double cathodes liquid plasma discharge (DC-LPD) method was developed to fabricate three-dimensional (3D) nest-like structure; electrode on the nickel foam (NF). The CuO-NiO/NF electrode obtained through annealing the in-plane epitaxial Cu(OH)(2)-Ni2O3H/NF in the oven, exhibits excellent electrocatalytic activities for the oxygen evolution reaction at a low overpotential of 319 mV to achieve a current density of 10 mA/cm(2). The electrochemically active surface area (ECSA) of CuO-NiO/NF is over 2 times larger than that of Cu(OH)(2)-Ni2O3H/NF electrode. The synergistic effort between Cu and Ni makes the CuO-NiO/NF electrode a superior electrocatalyst with improved activity and stability as compared to the single NiO/NF electrode.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 48 条
[21]   Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction [J].
Lee, Minoh ;
Oh, Hyung-Suk ;
Cho, Min Kyung ;
Ahn, Jae-Pyoung ;
Hwang, Yun Jeong ;
Min, Byoung Koun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 233 :130-135
[22]   Identifying the forefront of electrocatalytic oxygen evolution reaction: Electronic double layer [J].
Li, Guangfu ;
Chuang, Po-Ya Abel .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 239 :425-432
[23]   Nanostructured catalysts for electrochemical water splitting: current state and prospects [J].
Li, Xiumin ;
Hao, Xiaogang ;
Abudula, Abutiti ;
Guan, Guoqing .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (31) :11973-12000
[24]   Earth-Abundant Copper-Based Bifunctional Electrocatalyst for Both Catalytic Hydrogen Production and Water Oxidation [J].
Liu, Xiang ;
Zheng, Huafei ;
Sun, Zijun ;
Han, Ali ;
Du, Pingwu .
ACS CATALYSIS, 2015, 5 (03) :1530-1538
[25]   Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities [J].
Lu, Xunyu ;
Zhao, Chuan .
NATURE COMMUNICATIONS, 2015, 6
[26]  
Ma A. M., 1987, J SOLID STATE CHEM, V71, P418
[27]   Microplasmas for nanomaterials synthesis [J].
Mariotti, Davide ;
Sankaran, R. Mohan .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (32)
[28]   Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications [J].
Pawar, Sambhaji M. ;
Pawar, Bharati S. ;
Hou, Bo ;
Kim, Jongmin ;
Ahmed, Abu Talha Aqueel ;
Chavan, Harish. S. ;
Jo, Yongcheol ;
Cho, Sangeun ;
Inamdar, Akbar I. ;
Gunjakar, Jayavant L. ;
Kim, Hyungsang ;
Cha, SeungNam ;
Im, Hyunsik .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (25) :12747-12751
[29]   Solution plasma synthesis of bimetallic nanoparticles [J].
Saito, Genki ;
Nakasugi, Yuki ;
Yamashita, Toru ;
Akiyama, Tomohiro .
NANOTECHNOLOGY, 2014, 25 (13)
[30]   Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis [J].
Sivanantham, Arumugam ;
Shanmugam, Sangaraju .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 203 :485-493