Complete the Look: Scene-based Complementary Product Recommendation

被引:43
作者
Kang, Wang-Cheng [3 ]
Kim, Eric [1 ]
Leskovec, Jure [1 ,2 ]
Rosenberg, Charles [1 ]
McAuley, Julian [3 ]
机构
[1] Pinterest, San Francisco, CA USA
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.01078
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modeling fashion compatibility is challenging due to its complexity and subjectivity. Existing work focuses on predicting compatibility between product images (e.g. an image containing a t-shirt and an image containing a pair of jeans). However, these approaches ignore real-world 'scene' images (e.g. selfies); such images are hard to deal with due to their complexity, clutter, variations in lighting and pose (etc.) but on the other hand could potentially provide key context (e.g. the user's body type, or the season) for making more accurate recommendations. In this work, we propose a new task called 'Complete the Look', which seeks to recommend visually compatible products based on scene images. We design an approach to extract training data for this task, and propose a novel way to learn the scene-product compatibility from fashion or interior design images. Our approach measures compatibility both globally and locally via CNNs and attention mechanisms. Extensive experiments show that our method achieves significant performance gains over alternative systems. Human evaluation and qualitative analysis are also conducted to further understand model behavior. We hope this work could lead to useful applications which link large corpora of real-world scenes with shoppable products.
引用
收藏
页码:10524 / 10533
页数:10
相关论文
共 57 条
[1]  
Ak K. E., 2018, WACV
[2]   Learning Attribute Representations with Localization for Flexible Fashion Search [J].
Ak, Kenan E. ;
Kassim, Ashraf A. ;
Lim, Joo Hwee ;
Tham, Jo Yew .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :7708-7717
[3]  
Al-Halah Z., 2017, ICCV
[4]  
[Anonymous], 2012, CVPR
[5]  
[Anonymous], 2012, ACM MULTIMEDIA
[6]  
[Anonymous], 2015, Arxiv.Org, DOI DOI 10.3389/FPSYG.2013.00124
[7]  
[Anonymous], 2018, WSDM
[8]  
[Anonymous], 2018, CVPR
[9]  
Bossard Lukas., 2012, ACCV
[10]   SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning [J].
Chen, Long ;
Zhang, Hanwang ;
Xiao, Jun ;
Nie, Liqiang ;
Shao, Jian ;
Liu, Wei ;
Chua, Tat-Seng .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6298-6306