EEG Synchronization Analysis for Seizure Prediction: A Study on Data of Noninvasive Recordings

被引:79
作者
Detti, Paolo [1 ]
Vatti, Giampaolo [2 ]
de Lara, Garazi Zabalo Manrique [1 ]
机构
[1] Univ Siena, Dept Informat Engn & Math, I-53100 Siena, Italy
[2] Univ Siena, Dept Med Surg & Neurosci, I-53100 Siena, Italy
关键词
EEG data; epilepsy; synchronization measures; threshold-based classifier; data classification; PHASE-SYNCHRONIZATION; EPILEPSY; INDEX;
D O I
10.3390/pr8070846
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Objective: Epilepsy is a neurological disorder arising from anomalies of the electrical activity in the brain, affecting -65 million individuals worldwide. Prediction methods, typically based on machine learning methods, require a large amount of data for training, in order to correctly classify seizures with small false alarm rates. Methods: In this work, we present a new database containing EEG scalp signals of 14 epileptic patients acquired at the Unit of Neurology and Neurophysiology of the University of Siena, Italy. Furthermore, a patient-specific seizure prediction method, based on the detection of synchronization patterns in the EEG, is proposed and tested on the data of the database. The use of noninvasive EEG data aims to explore the possibility of developing a noninvasive monitoring/control device for the prediction of seizures. The prediction method employs synchronization measures computed over all channel pairs and a computationally inexpensive threshold-based classification approach. Results and conclusions: The experimental analysis, performed by inspection and by the proposed threshold-based classifier on all the patients of the database, shows that the features extracted by the synchronization measures are able to detect preictal and ictal states and allow the prediction of the seizures few minutes before the seizure onsets.
引用
收藏
页数:15
相关论文
共 24 条
[1]   Towards accurate prediction of epileptic seizures: A review [J].
Assi, Elie Bou ;
Nguyen, Dang K. ;
Rihana, Sandy ;
Sawan, Mohamad .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 34 :144-157
[2]   On the proper selection of preictal period for seizure prediction [J].
Bandarabadi, Mojtaba ;
Rasekhi, Jalil ;
Teixeira, Cesar A. ;
Karami, Mohammad R. ;
Dourado, Antonio .
EPILEPSY & BEHAVIOR, 2015, 46 :158-166
[3]   Real-Time Epileptic Seizure Prediction Using AR Models and Support Vector Machines [J].
Chisci, Luigi ;
Mavino, Antonio ;
Perferi, Guido ;
Sciandrone, Marco ;
Anile, Carmelo ;
Colicchio, Gabriella ;
Fuggetta, Filomena .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (05) :1124-1132
[4]   Current limitations of antiepileptic drug therapy: a conference review [J].
Deckers, CLP ;
Genton, P ;
Sills, GJ ;
Schmidt, D .
EPILEPSY RESEARCH, 2003, 53 (1-2) :1-17
[5]   A Patient-Specific Approach for Short-Term Epileptic Seizures Prediction Through the Analysis of EEG Synchronization [J].
Detti, Paolo ;
de lara, Garazi Zabalo Manrique ;
Bruni, Renato ;
Pranzo, Marco ;
Sarnari, Francesco ;
Vatti, Giampaolo .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (06) :1494-1504
[6]   Detecting Abnormal Pattern of Epileptic Seizures via Temporal Synchronization of EEG Signals [J].
Fan, Miaolin ;
Chou, Chun-An .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (03) :601-608
[7]   Instruction manual for the ILAE 2017 operational classification of seizure types [J].
Fisher, Robert S. ;
Cross, J. Helen ;
D'Souza, Carol ;
French, Jacqueline A. ;
Haut, Sheryl R. ;
Higurashi, Norimichi ;
Hirsch, Edouard ;
Jansen, Floor E. ;
Lagae, Lieven ;
Moshe, Solomon L. ;
Peltola, Jukka ;
Perez, Eliane Roulet ;
Scheffer, Ingrid E. ;
Schulze-Bonhage, Andreas ;
Somerville, Ernest ;
Sperling, Michael ;
Yacubian, Elza Marcia ;
Zuberi, Sameer M. .
EPILEPSIA, 2017, 58 (04) :531-542
[8]   Seizure prediction for therapeutic devices: A review [J].
Gadhoumi, Kais ;
Lina, Jean-Marc ;
Mormann, Florian ;
Gotman, Jean .
JOURNAL OF NEUROSCIENCE METHODS, 2016, 260 :270-282
[9]   Epilepsy as a Disorder of Cortical Network Organization [J].
Kramer, Mark A. ;
Cash, Sydney S. .
NEUROSCIENTIST, 2012, 18 (04) :360-372
[10]   Patient-specific bivariate-synchrony-based seizure prediction for short prediction horizons [J].
Kuhlmann, Levin ;
Freestone, Dean ;
Lai, Alan ;
Burkitt, Anthony N. ;
Fuller, Karen ;
Grayden, David B. ;
Seiderer, Linda ;
Vogrin, Simon ;
Mareels, Iven M. Y. ;
Cook, Mark J. .
EPILEPSY RESEARCH, 2010, 91 (2-3) :214-231