THE HIGHER INTEGRABILITY AND THE VALIDITY OF THE EULER-LAGRANGE EQUATION FOR SOLUTIONS TO VARIATIONAL PROBLEMS

被引:8
作者
Bonfanti, Giovanni [1 ]
Cellina, Arrigo [1 ]
Mazzola, Marco [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, I-20125 Milan, Italy
关键词
calculus of variations; necessary conditions; Euler-Lagrange equation;
D O I
10.1137/110820890
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove higher integrability properties of solutions to the problem of minimizing integral(Omega) L(x, u(x), del u(x)) dx, where xi bar right arrow L(x, u, xi) is a convex function satisfying some additional conditions. As an application, we prove the validity of the Euler-Lagrange equation for a class of functionals with growth faster than exponential.
引用
收藏
页码:888 / 899
页数:12
相关论文
共 8 条
[1]  
[Anonymous], 1990, CLASSICS APPL MATH
[2]  
[Anonymous], 1992, Comment. Math. Univ. Carolin.
[3]   On the validity of the Euler-Lagrange equation in a nonlinear case [J].
Bonfanti, Giovanni ;
Mazzola, Marco .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) :266-269
[4]  
CELLINA A., CALC VAR PA IN PRESS
[5]  
Cellina A, 2011, J CONVEX ANAL, V18, P173
[6]  
DeGiovanni M., 2009, SIAM J. Control Optim, V48, P2857, DOI [10.1137/090747968, DOI 10.1137/090747968]
[7]   ON A LOCAL HOLDER CONTINUITY FOR A MINIMIZER OF THE EXPONENTIAL ENERGY FUNCTIONAL [J].
NAITO, H .
NAGOYA MATHEMATICAL JOURNAL, 1993, 129 :97-113
[8]  
Rockafellar T., 1972, Convex Analysis