Changes in transconductance(gm) and Ion/Toff with high-K dielectrics in MX2 monolayer 10 nm channel double gate n-MOSFET

被引:5
作者
Kumar, S. Prasanna [1 ]
Sandeep, P. [1 ]
Choudhary, Sudhanshu [1 ]
机构
[1] Natl Inst Technol Kurukshetra, Sch VLSI Design & Embedded Syst, Kurukshetra, Haryana, India
关键词
Density functional theory; FET; High-K dielectric; NEGF; Transition metal dichalcogenides; SCALING LIMIT; TRANSISTORS; BENCHMARKING;
D O I
10.1016/j.spmi.2017.07.021
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We investigate monolayer Transition Metal Dichalcogenides (TMDs) of type MX2 (MoS2, MoSe2, MoTe2, WS2 and WSe2) 10 nm n-channel Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) with different dielectrics (SiO2, Al2O3, HfO2 and TiO2) using DFT and NEGF formalism. Results suggest that increasing dielectric constant increases both trans conductance (g(m)) and I-on/l(off) for all type of MX2 channels. I-on/l(off) and g(m) increases by one order with increase in dielectric constant K. Among all type of MX2 channels considered, WS2 channels results into highest values of g(m) (similar to 36.29 uS) and I-on/I-off (4.3*10(7)) with TiO2 dielectric. Variation in Subthreshold Slope (SS) with increase in dielectric constants are negligibly small, SS value of 58.52 mV/dec is obtained with Al2O3 dielectric for WS2 channel. However, a SS value of similar to 60.02 mV/dec is obtained with TiO2 dielectric for all MX2 channels. The results suggest that TiO2 dielectric with WS2 channel can be used for High Performance (HP) and Low Power (LP) devices since it shows large I-on/I-off (similar to 10(7)) and SS around 60 mV/dec. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:642 / 648
页数:7
相关论文
共 8 条
[1]   Benchmarking of MoS2 FETs With Multigate Si-FET Options for 5 nm and Beyond [J].
Agarwal, Tarun ;
Yakimets, Dmitry ;
Raghavan, Praveen ;
Radu, Iuliana ;
Thean, Aaron ;
Heyns, Marc ;
Dehaene, Wim .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (12) :4051-4056
[2]  
Chouhan S., 2016, IEEE POWER ENERGY SO, P1, DOI DOI 10.1109/PESGM.2016.7741576
[3]   Multiscale Modeling for Graphene-Based Nanoscale Transistors [J].
Fiori, Gianluca ;
Iannaccone, Giuseppe .
PROCEEDINGS OF THE IEEE, 2013, 101 (07) :1653-1669
[4]   Modeling of surface-roughness scattering in ultrathin-body SOI MOSFETs [J].
Jin, Seonghoon ;
Fischetti, Massimo V. ;
Tang, Ting-Wei .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) :2191-2203
[5]   On Monolayer MoS2 Field-Effect Transistors at the Scaling Limit [J].
Liu, Leitao ;
Lu, Yang ;
Guo, Jing .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (12) :4133-4139
[6]   Benchmarking Transition Metal Dichalcogenide MOSFET in the Ultimate Physical Scaling Limit [J].
Majumdar, Kausik ;
Hobbs, Chris ;
Kirsch, Paul D. .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (03) :402-404
[7]   A 45nm logic technology with high-k plus metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging [J].
Mistry, K. ;
Allen, C. ;
Auth, C. ;
Beattie, B. ;
Bergstrom, D. ;
Bost, M. ;
Brazier, M. ;
Buehler, M. ;
Cappellani, A. ;
Chau, R. ;
Choi, C. -H. ;
Ding, G. ;
Fischer, K. ;
Ghani, T. ;
Grover, R. ;
Han, W. ;
Hanken, D. ;
Hatttendorf, M. ;
He, J. ;
Hicks, J. ;
Huessner, R. ;
Ingerly, D. ;
Jain, P. ;
James, R. ;
Jong, L. ;
Joshi, S. ;
Kenyon, C. ;
Kuhn, K. ;
Lee, K. ;
Liu, H. ;
Maiz, J. ;
McIntyre, B. ;
Moon, P. ;
Neirynck, J. ;
Pei, S. ;
Parker, C. ;
Parsons, D. ;
Prasad, C. ;
Pipes, L. ;
Prince, M. ;
Ranade, P. ;
Reynolds, T. ;
Sandford, J. ;
Schifren, L. ;
Sebastian, J. ;
Seiple, J. ;
Simon, D. ;
Sivakumar, S. ;
Smith, P. ;
Thomas, C. .
2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, :247-+
[8]   Numerical modeling of triple material gate stack gate all-around (TMGSGAA) MOSFET considering quantum mechanical effects [J].
Padmanaban, B. ;
Ramesh, R. ;
Nirmal, D. ;
Sathiyamoorthy, S. .
SUPERLATTICES AND MICROSTRUCTURES, 2015, 82 :40-54