On the growth of cocompact hyperbolic Coxeter groups

被引:21
作者
Kellerhals, Ruth [1 ]
Perren, Genevieve [1 ]
机构
[1] Univ Fribourg, Dept Math, CH-1700 Fribourg, Switzerland
基金
瑞士国家科学基金会;
关键词
POLYTOPES; SERIES; VOLUME;
D O I
10.1016/j.ejc.2011.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an arbitrary cocompact hyperbolic Coxeter group G with a finite generator set S and a complete growth function f(s)(x) = P(x)/Q(x), we provide a recursion formula for the coefficients of the denominator polynomial Q(x). It allows us to determine recursively the Taylor coefficients and to study the arithmetic nature of the poles of the growth function f(s)(x) in terms of its subgroups and exponent variety. We illustrate this in the case of compact right-angled hyperbolic n-polytopes. Finally, we provide detailed insight into the case of Coxeter groups with at most 6 generators, acting cocompactly on hyperbolic 4-space, by considering the three combinatorially different families discovered and classified by Lanner, Kaplinskaya and Esselmann, respectively. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1299 / 1316
页数:18
相关论文
共 24 条
[1]  
Cannon J., GROWTH CLOSED SURFAC
[2]   GROWTH FUNCTIONS OF SURFACE GROUPS [J].
CANNON, JW ;
WAGREICH, P .
MATHEMATISCHE ANNALEN, 1992, 293 (02) :239-257
[3]   THE POINCARE SERIES OF THE HYPERBOLIC COXETER GROUPS WITH FINITE VOLUME OF FUNDAMENTAL DOMAINS [J].
Chapovalov, Maxim ;
Leites, Dimitry ;
Stekolshchik, Rafael .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 :169-215
[4]  
CHARNEY R, 1991, GEOMETRIAE DEDICATA, V39, P373
[5]  
Coxeter H.S.M., 1980, Generators and relations for discrete groups, V4th
[6]  
Davis Michael, 2008, London Mathematical Society Monographs Series
[7]   The classification of compact hyperbolic Coxeter d-polytopes with d+2 facets [J].
Esselmann, F .
COMMENTARII MATHEMATICI HELVETICI, 1996, 71 (02) :229-242
[8]   THE VOLUME OF HYPERBOLIC COXETER POLYTOPES OF EVEN DIMENSION [J].
HECKMAN, GJ .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1995, 6 (02) :189-196
[9]   The Lehmer polynomial and pretzel links [J].
Hironaka, E .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2001, 44 (04) :440-451
[10]  
Kaplinskaja I.M., 1974, Math. Notes Acad. Sci. USSR, V15, P88