Boundedness and Fredholmness of pseudodifferential operators in variable exponent spaces

被引:23
作者
Rabinovich, Vladimir [1 ]
Samko, Stefan [2 ]
机构
[1] Inst Politecn Nacl, Mexico City 07738, DF, Mexico
[2] Univ Algarve, FCT, P-8005139 Faro, Portugal
关键词
pseudodifferential operators; Hormander class; singular operators; variable exponent; generalized Lebesgue space; Fredholmness;
D O I
10.1007/s00020-008-1566-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a statement on the boundedness of a certain class of singular type operators in the weighted spaces L-p(.)(R-n, w) with variable exponent p(x) and a power type weight w, from which we derive the boundedness of pseudodifferential operators of Hormander class S-1,0(0) in such spaces. This gives us a possibility to obtain a necessary and sufficient condition for pseudodifferential operators of the class OPS1,0m with symbols slowly oscillating at infinity, to be Fredholm within the frameworks of weighted Sobolev spaces H-w(s,p(.))(R-n) with constant smoothness s, variable p(.)-exponent, and exponential weights w.
引用
收藏
页码:507 / 537
页数:31
相关论文
共 30 条
[1]  
ALVAREZ J, 1994, B UNIONE MAT ITAL, V8A, P123
[2]   CLASS OF BOUNDED PSEUDODIFFERENTIAL OPERATORS [J].
CALDERON, AP ;
VAILLANCOURT, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1972, 69 (05) :1185-+
[3]  
Cruz-Uribe D, 2003, ANN ACAD SCI FENN-M, V28, P223
[4]  
Diening L, 2004, J MATH ANAL APPL, V298, P559, DOI 10.1016/j.jmaa.2004.05.048
[5]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[6]  
Diening L, 2003, J REINE ANGEW MATH, V563, P197
[7]  
Grusin VV., 1970, FUNKT ANAL PRIL, V4, P37
[8]  
HARJULEHTO P, 2003, FUTURE TRENDS GEOMET, P85
[9]  
Karlovich A. Yu., 2003, J. Integral Equ. Appl., V15, P263, DOI 10.1216/jiea/1181074970
[10]  
Kokilashvili V, 2003, P A RAZMADZE MATH I, V131, P61