Periodic solutions for a pseudo-relativistic Schrodinger equation

被引:32
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
关键词
Pseudo-relativistic Schrodinger equation; Periodic solutions; Linking Theorem; FRACTIONAL LAPLACIANS; NONLINEAR EQUATIONS; OBSTACLE PROBLEM; REGULARITY; EXISTENCE; OPERATORS; BOUNDARY; COLLAPSE;
D O I
10.1016/j.na.2015.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and the regularity of non trivial T-periodic solutions to the following nonlinear pseudo-relativistic Schrodinger equation (root-Delta(x) + m(2) - m)u(x) - f(x, u(x)) in (0, T)(N) (0.1) where T > 0, m is a non negative real number, integral is a regular function satisfying the Ambrosetti-Rabinowitz condition and a polynomial growth at rate p for some 1 < p < 2# - 1. We investigate such problem using critical point theory after transforming it to an elliptic equation in the infinite half-cylinder (0, T)(N) x (0, infinity) with a nonlinear Neumann boundary condition. By passing to the limit as m -> 0 in (0.1) we also prove the existence of a non trivial T-periodic weak solution to (0.1) with m = 0. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:262 / 284
页数:23
相关论文
共 29 条
[1]  
[Anonymous], 1989, APPL MATH SCI
[2]   CRITICAL-POINT THEOREMS FOR INDEFINITE FUNCTIONALS [J].
BENCI, V ;
RABINOWITZ, PH .
INVENTIONES MATHEMATICAE, 1979, 52 (03) :241-273
[3]   The Sobolev inequality on the torus revisited [J].
Benyi, Arpad ;
Oh, Tadahiro .
PUBLICATIONES MATHEMATICAE DEBRECEN, 2013, 83 (03) :359-374
[4]   SEMILINEAR EQUATIONS IN RN WITHOUT CONDITION AT INFINITY [J].
BREZIS, H .
APPLIED MATHEMATICS AND OPTIMIZATION, 1984, 12 (03) :271-282
[5]   Layer solutions in a half-space for boundary reactions [J].
Cabré, X ;
Solà-Morales, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1678-1732
[6]   NONLINEAR EQUATIONS FOR FRACTIONAL LAPLACIANS II: EXISTENCE, UNIQUENESS, AND QUALITATIVE PROPERTIES OF SOLUTIONS [J].
Cabre, Xavier ;
Sire, Yannick .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (02) :911-941
[7]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[8]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[9]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[10]   Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Salsa, Sandro ;
Silvestre, Luis .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :425-461