Best approximation and interpolation of (1+(ax)2)-1 and its transforms

被引:14
作者
Lubinsky, DS [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
interpolation; best approximation;
D O I
10.1016/j.jat.2003.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Lagrange interpolants at the Chebyshev zeros yield best relative polynomial approximations of (1 + (ax)(2))(-1) on [-1,1] and more generally of [GRAPHICS] where mu is a suitably restricted measure. We use this to study relative approximation of (1 + x(2))(-1) on an increasing sequence of intervals, and Lagrange interpolation of \x\(gamma). Moreover, we show how it gives a simple proof of identities for some trigonometric sums. (C) 2003 Published by Elsevier Inc.
引用
收藏
页码:106 / 115
页数:10
相关论文
共 6 条
[1]  
Achieser NI., 1992, THEORY APPROXIMATION
[2]  
Cheney E. W., 1982, INTRO APPROXIMATION
[3]   The Bernstein constant and polynomial interpolation at the Chebyshev nodes [J].
Ganzburg, MI .
JOURNAL OF APPROXIMATION THEORY, 2002, 119 (02) :193-213
[4]  
Gradshteyn I. S., 1980, TABLE INTEGRALS SERI
[5]  
MILOVANOVIC GV, 1994, TOPICS POLYOMIALS EX
[6]  
VARGA R, 1990, CBMS NSF REG C SER A